

Introduction to Linux-wpan and Potential Collaboration

Stefan Schmidt stefan@osg.samsung.com Samsung Open Source Group

Agenda

- Relationship to RIOT
- Linux-wpan Project
- Current Collaboration
- Future

Relationship to RIOT

Relationship

- Over the air protocol interoperation
 - IEEE 802.15.4 and 6LoWPAN
 - Independent implementations
 - Interoperability testing
- RIOT native on Linux

Linux-wpan Project

Motivation

- Platforms already running Linux could benefit from native 15.4 and 6LoWPAN subsystems
- 15.4 transceivers could easily be added to existing designs
- Battery powered sensors on the other hand are more likely to run a OS like RIOT
- Example: Google OneHub AP which already comes with, de-activated, 15.4 hardware
- Example: Ci40 Creator board as home IoT hub

Development Boards

- Development boards with 15.4 hardware
- Ci40 Creator (Keno should have mentioned the 6LoWPAN clickers)
- ARTIK 5/10
- Raspberry Pi with openlabs shield
- Various transceivers hooked up via SPI
- EOL atusb USB transceiver

Linux-wpan Project

- IEEE 802.15.4 and 6LoWPAN support in the mainline Linux kernel
- Started in 2008 as linux-zigbee project on SourceForge
- First steps of mainlining in 2012
- New project name to avoid confusion: linux-wpan
- New maintainer: Alexander Aring, Pengutronix
- Normal kernel development model
- Patches are posted and reviewed on the mailing list
- Accepted patches find their way through bluetooth-next towards Linus tree

Linux-wpan Community

- Small community: 1-2 core devs and ~4 additional people for specific drivers
- #linux-wpan on Freenode (~25 people)
- http://vger.kernel.org/vger-lists.html#linuxwpan (~85 people)
- https://github.com/linux-wpan (no PR model)
- http://wpan.cakelab.org used for wpan-tools releases and docs

Current Status

- ieee802154 layer with driver for various transceivers (at86rf2xx, mrf24j40, cc2520, atusb, adf7242)
- Link Layer Security
- 6LoWPAN with fragmentation and reassembly (RFC 4944)
- LOWPAN_IPHC and NHC for UDP (RFC 6282)
- Testing between Linux, RIOT and Contiki

Current Collaboration

Development

- Developer discussions about protocol interpretations
- Test counterpart for new developments e.g. neighbour discovery
- RIOT native on Linux

Testing

- Linux-wpan on the Raspberry Pi to test as boarder router for RIOT nodes
- Part of tests run before every RIOT release
- Packet sniffing

Future

raw802154

- PR #5582, currently reviewed
- With RIOT native on Linux this can be used for virtual testing on the 15.4 level
- RIOT will use a fake loop-back interface of the Linux-wpan subsystem through the raw802154 driver
- Virtual 15.4 communication between RIOT, Linux and maybe later OpenThread

raw802154 Details

- The RIOT driver will use raw packets over AF_PACKET
- The Linux loop-back interface will be used in promiscuous mode to avoid address filter problems
- Acknowledgements are not handled
- Several virtual interfaces can be created with RIOT and Linux
- Could also be used to run on a real transceiver interface, not recommended :-)

Comparison

Feature	Linux	RIOT
IEEE 802.15.4: data and ACK frames	ø	ø
IEEE 802.15.4: beacon and MAC command frames		×
IEEE 802.15.4: coordinator scenario: scanning, joining, PAN coordinator		×
IEEE 802.15.4: link layer security	ø	×
6LoWPAN: frame encapsulation, fragmentation, addressing (RFC 4944)		ø
6LoWPAN: IP header compression (RFC 6282)	Ý	ø
6LoWPAN: next header compression, UDP only (RFC 6282)		ø
6LoWPAN: generic header compression (RFC 7400)	Partial	×
6LoWPAN: neighbour discovery optimizations (RFC 6775)	Partial	I.
Mesh link establishment draft	×	×

Linux-wpan Future

- Implement missing parts of the 15.4 specification
 - Beacon and MAC command frame support
 - Coordinator support in MAC layer and wpan-tools
 - Scanning
- Improve existing drivers and add support for new hardware
- Neighbour Discovery Optimizations (RFC 6775), started
- Evaluate running OpenThread on top of linux-wpan

RIOT Future

- Only suggestions from my side :-)
- Link Layer Security implementation
- Beacon and MAC command frame support
- PAN scanning and joining
- Support more transceivers
- Simply hook them up to a board over SPI
- Learn from what we had to figure out e.g.
 mrf24j40 problems with security enabled frames

Together

- Automate RIOT vs. Linux testing with the raw802154 driver in RIOT
- Compatible short address handling
- The mesh link establishment draft might be interesting to implement (OpenThread, ZigBee IP)

Thank you!

6LoWPAN

- Physical and MAC layer defined by IEEE 802.15.4 Advancing Technology from 2003 onwards
- Series of IETF specifications from 2007 onwards (RFCs 4944, 6282, 7400, etc)

for Humanity

L5 Application Layer	Application	Application
L4 Transport Layer	TCP UDP ICMP	UDP ICMPv6
L3 Network Layer	IP	IPv6
		6LoWPAN
L2 Data Link Layer	Ethernet MAC	IEEE 802.15.4 MAC
L1 Physical Layer	Ethernet PHY	IEEE 802.15.4 PHY

Architecture

- ieee802154 and mac802154 handle the driver and MAC layer (wpan0 interface)
- 6LoWPAN sits on top of the wpan devices and acts as an adaptation layer to be used by the normal IPv6 kernel stack (lowpan0 interface)
- The 6LoWPAN subsystem transparently handles fragmentation and reassembly between the different MTUs as well as compression

