Building a robot powered with RIOT OS

Gilles DOFFE - 09/13/2018
Cortex is a robot built for the French Robotic Cup 2018, qualificative phase of the Eurobot contest. This event occurs each year in May in La-Roche-Sur-Yon, in west of France.
THANKS

› Savoir-faire Linux

› COGIP TEAM
 • Yannick Gicquel : electronics & software
 • Stephen Clymans : software
 • Cédric Wolff : mechanics
 • Gilles Doffe : machining & software
 • Estelle Taupin : logistics
 • Pierre Delignieres, Axel & Robin Doffe : secondary Bee robot using Lego

› Partners:
 • LABO Cesson
 • CEMA Technologie
Robotics: Multi area of science

Electronics
ARCHITECTURE
DESIGN

Software
ARCHITECTURE
DEVELOPMENT
INTEGRATION
VALIDATION

Mechanics
DESIGN
MACHINING

Robotics: Multi area of science
CORTEX
STM32F446
- ARM Cortex M4
- Frequency : 180MHz

Peripheral used :
- 3 PWM
- 2 QDEC
- 2 UART
- I2C
- 8 ADC
- GPIOs
Architecture and scheduling

Cortex runs 4 threads with cooperative default scheduling.
Architecture

› Three threads sorted by decreasing priorities:
 • Motion control
 • Planner
 • Analog sensors
› Optional calibration thread
 • Calibrate servomotors and sensors
 • Step by step debugging
 • Tune PID parameters
 • It uses getchar(), which introduce blocking calls
Scheduling

› Cooperative: no systick
› All threads are fired in a sequential way in priority order
› Each thread allows the next one to be run once it finish
› Everything is done in one period of 20ms, hoping it works…

› We need to turn RIOT into a preemptive real-time OS
 • STM32 already has a hardware systick timer:
 ‐ PR #9332 shows an example
 ‐ Rework this PR to turn it into a generic API
 • Rework our robot source code accordingly (mutex, priority inversion, …)
Motion control

Cortex is propelled using 2 differential wheels.
The motion control algorithm makes sure the robot rolls straight using a quad PID corrector.
Motion control needs

› Driving 2 DC gearhead motors
 • DC motors driver has been developed for RIOT OS (incoming PR).
 • Can drive several types of H-bridge drivers
 • To be tested: brushless motor and stepper motor in continuous mode

› Measuring distance from incremental encoders (phase quadrature)
 • QDEC peripheral driver (PR #8482 merged).

› Motion simulation
 • Problem: One robot for several developers
 • Solution: Implement PWM and QDEC for native architecture
Motion mechanic base
QDEC driver API

› Count clockwise or counter-clockwise
› Manage 3 modes:
 • QDEC_X1
 • QDEC_X2
 • QDEC_X4
› Supported architectures:
 • STM32 (hardware timer feature)
 • Native (mainly for simulation purpose)
› Other candidate architecture:
 • Atmel AVR atxmega

Motor driver API

› Features:
 • Support most of H-bridge hardware drivers
 • Support several motors by hardware drivers
 • Direction (CW and CCW)
 • Brake if available
 • Speed control (using PWM)

› Multi-arch driver
 • MCU requirements:
 - PWM driver
 - GPIO support

› Incoming PR :)
Motion control simulation

› Problems:
 • Only one robot for several developers
 • I do not run fast enough behind the robot in case of emergency :)
 • Flashing the robot several times on test table is painful
 • Robot moving is visual. How to have a visual rendering in simulation?

› Solutions:
 • Emulate physics relation between QDEC and PWM
 - Develop PWM driver for native architecture (Incoming PR)
 - Simple average to simulate distance error between order and measure
 • Stream positional information to a 3D renderer
 - Streaming is done through console
 - Use a python script in FreeCAD parametric modeler to render robot moves
Motion control physical simulation

› Problems :
 • First physical tests can still lead to run fast to stop the robot :)
 • Context and conditions can make difficult to test the robot

› Solutions :
 • Using rollers, the robot can be tested without moving
 • Rendering is the same than for pure simulation
 - Using FreeCAD
 - Stream robot coordinates \((x, y, \theta)\) to FreeCAD through UART
Rollers
Simulation video
Final video
What’s new for 2019?
Incoming for 2019

› Sharp sensors are not efficient for avoidance
 • VL53L0X sensor driver
 • Neato LIDAR XV-11 driver
› Cleaning and stabilization of the source code
› Full reworking of robot scheduling
› Wireless communication (Xbee, Zigbee, ...)
 • Wireless programming
 • Wireless debugging
 • Multi-Robots communication
› Testing !!!
› Sharing !!!
Useful links

› Savoir-faire Linux: https://savoirfairelinux.com/en
› Savoir-faire Linux github: https://github.com/savoirfairelinux
› COGIP: https://cogip.duckdns.org/en
› COGIP github: https://github.com/cogip
 • COGIP RIOT fork: https://github.com/cogip/RIOT
 • COGIP mcu-firmware: https://github.com/cogip/mcu-firmware
Thank you!

Questions?

Savoir-faire Linux: gilles.doffe@savoirfairelinux.com
COGIP: cogip35@gmail.com