
RIOT-rs
Rust-based Configurations for RIOT

RIOT Summit – September 2023

Kaspar Schleiser proxied by Emmanuel Baccelli

Agenda

1. RIOT: Why? How? What?
2. Rust: Why?
3. Rust-based RIOT: How?
4. What is RIOT-rs?
5. RIOT-rs performance? A preliminary evaluation
6. Debating embedded Rust and RIOT: where to now?

RIOT: Why? How?

At the start, our goals were to provide

○ An alternative to exotic programming (e.g. TinyOS) or closed-source (e.g. Zephyr)
○ The 1st OS designed for low-power IPv6 (6LoWPAN/CoAP) standard network stack
○ Prevention of vendor lock-in, empowering low-power IoT end-users

Our approach has been

○ OS architecture: microkernel & threading
○ Standard coding: ANSI C
○ Fully open source: rewrite vendor blobs
○ Implementing – and contributing to – open network standards (IETF)
○ Grassroots open source community processes

RIOT: Why? How?

At the start, our goals were to provide

○ An alternative to exotic programming (e.g. TinyOS) or closed-source (e.g. Zephyr)
○ The 1st OS designed for low-power IPv6 (6LoWPAN/CoAP) standard network stack
○ Prevention of vendor lock-in, empowering low-power IoT end-users

Our approach has been

○ OS architecture: microkernel & threading
○ Standard coding: ANSI C
○ Fully open source: rewrite vendor blobs
○ Implementing – and contributing to – open network standards (IETF)
○ Grassroots open source community processes

What is RIOT?

● core/: scheduling, mutex, ipc
● sys/: timers, networking, fs, …
● cpu/: MCU architecture support
● drivers/periph: peripheral drivers
● drivers/: sensor/network/misc drivers
● pkg/: third party code
● boards/*: board configuration
● build system (make, Kconfig…)

➔ (A well-known general-purpose OS)
➔ (A lively open source community)

Awesome Fact: this runs on 99% of our
supported HW, just by changing BOARD

Ceilings with RIOT now

Hitting limits w.r.t. security

● Making mem protection + MPU first class citizens
● Providing configuration(s) with “defensive” code
● Catching errors: Graceful shutdown / restart of threads

Hitting limits w.r.t. programming & maintenance

● Bound to the limits of C (API design, safety, abstractions, tooling, …)
● Dealing with the toolchain mess
● Manpower to CI & maintain the system’s growth (uncontrolled?)

If left unaddressed, RIOT could drift into becoming subpar

➔ Which long-term direction should explore from here ??

Ceilings with RIOT now

Hitting limits w.r.t. security

● Making mem protection + MPU first class citizens
● Providing configuration(s) with “defensive” code
● Catching errors: Graceful shutdown / restart of threads

Hitting limits w.r.t. programming & maintenance

● Bound to the limits of C (API design, safety, abstractions, tooling, …)
● Dealing with the toolchain mess
● Peoplepower for CI & maintenance of system’s (un)controlled growth

If left unaddressed, RIOT could drift into becoming subpar

➔ Which long-term direction should explore from here ??

Ceilings with RIOT now

Hitting limits w.r.t. security

● Making mem protection + MPU first class citizens
● Providing configuration(s) with “defensive” code
● Catching errors: Graceful shutdown / restart of threads

Hitting limits w.r.t. programming & maintenance

● Bound to the limits of C (API design, safety, abstractions, tooling, …)
● Dealing with the toolchain mess
● Peoplepower to CI & maintain the system’s growth (uncontrolled?)

If left unaddressed, RIOT could drift into becoming subpar

➔ Which long-term direction should explore from here ??

Agenda

1. RIOT: Why? How? What?
2. Rust: Why?
3. Rust-based RIOT: How?
4. What is RIOT-rs?
5. RIOT-rs performance? A preliminary evaluation
6. Debating embedded Rust and RIOT: where to now?

Enter Rust

The “new” kid on the block, challenging C…

… with a different trade-off combining:

● High-level ergonomics;
● Built-in memory safety;
● Low-level control;

With modern tooling (build with cargo, import crates)...

➔ What we need to fix our problems on embedded ??

(We already have Rust wrappers)

(We already use Rust drivers on some boards)

Recent Rust rant: see this post
on Google Open Source Blog

https://opensource.googleblog.com/2023/06/rust-fact-vs-fiction-5-insights-from-googles-rust-journey-2022.html

Enter Rust

The “new” kid on the block, challenging C…

… with a different trade-off combining:

● High-level ergonomics;
● Built-in memory safety;
● Low-level control;

With modern tooling (build with cargo, import crates)...

➔ What we need to fix our problems on embedded ??

(We already have Rust wrappers)

(We already use Rust drivers on some boards)

Recent Rust rant: see this post
on Google Open Source Blog

https://opensource.googleblog.com/2023/06/rust-fact-vs-fiction-5-insights-from-googles-rust-journey-2022.html

What Expectations with (Much) More Rust?

Technical

- Inherent memory safety, without (much?) performance loss
- Workflow changes (stop chasing whole categories of mean bugs)
- More modern tooling (lean & mean)

Non-technical

- Further differentiate from (deep-pocketed) Zephyr / FreeRTOS
- Potential synergy with (lively) embedded Rust movement

What Expectations with (Much) More Rust?

Technical

- Inherent memory safety, without (much?) performance loss
- Workflow changes (stop chasing whole categories of mean bugs)
- More modern tooling (lean & mean)

Non-technical

- Further differentiate from (deep-pocketed) Zephyr / FreeRTOS
- Potential synergy with (lively) embedded Rust movement

Embedded Rust: What’s Out There Already?

Quite a bit, and growing:

● Drivers, crypto libs…
● Hardware abstraction (e.g. embedded-hal)
● Network abstraction (e.g. embedded-nal)
● Network stack (e.g. smoltcp)
● Framework for embedded async Rust (e.g. Embassy)
● Full-fledged operating system (e.g. Tock-OS)

https://docs.rs/embedded-hal/latest/embedded_hal/
https://docs.rs/embedded-nal/latest/embedded_nal/
https://github.com/smoltcp-rs/smoltcp
https://github.com/embassy-rs/embassy
https://github.com/tock/tock

Intermediate Summary

Fact: Rust picked up steam, for good reasons

➔ not only in Linux & unconstrained, but also on embedded & constrained devices!

Question: Could (much more) Rust fix our problems?

➔ What would (much more) Rust look like ??

Agenda

1. RIOT: Why? How? What?
2. Rust: Why?
3. Rust-based RIOT: How?
4. What is RIOT-rs?
5. RIOT-rs performance? A preliminary evaluation
6. Debating embedded Rust and RIOT: where to now?

Alternatives for (much more) Rust

In the context of a research project RIOT-fp * we considered different experiments

1. Prototype RIOT scheduler + RIOT apps on top of TockOS
2. Incremental rewrites of core RIOT modules in Rust
3. Prototype RIOT over async Rust framework (Embassy)

* See online https://future-proof-iot.github.io/RIOT-fp/about

No standard Rust async,
Not lib-oriented,
100% MPU-dependent,
can’t replicate RIOT
scheduling semantics…

Re-write of core RIOT in Rust

driversμkernel
(core / threads)

libs

HAL (cpu/board/periph)

sys

C

Rust

app

driversμkernel
(core)

libs

HAL (cpu/board/periph)

sys

RIOT + Rust wrappers
(C configs)

Cargo-built RIOT
(with Rust core)

(bootloader) (bootloader)

app appapp

After several rewrites of core (task switching) in Rust… we observe that

● Build system modification is the big chunk
○ rabbit hole starts with driving the build with cargo and Rust needing LLVM…
○ leads to even more messy than RIOT current build system…

Long story short, based on our experience during our research project:

● Not worth it for just “a Rust core” (vs Rust wrappers for select modules)

Re-write of core RIOT in Rust

* e.g. based on Hax, see https://github.com/hacspec/hacspec-v2 (collaboration during RIOT-fp project)

➔ But perspectives include proofs* on functional Rust (RIOT module rewrites)

https://github.com/hacspec/hacspec-v2

After several rewrites of core (task switching) in Rust… we observe that

● Build system modification is the big chunk
○ rabbit hole starts with driving the build with cargo and Rust needing LLVM…
○ leads to even more messy than RIOT current build system…

Long story short, based on our experience during our research project:

● Not worth it for just “a Rust core” (vs Rust wrappers for select modules)

Re-write of core RIOT in Rust

* e.g. based on Hax, see https://github.com/hacspec/hacspec-v2 (collaboration during RIOT-fp project)

➔ But perspectives include proofs* on functional Rust (RIOT module rewrites)

https://github.com/hacspec/hacspec-v2

Alternatives for (much more) Rust

In the context of a research project RIOT-fp * we considered different options

1. Prototype RIOT scheduler + RIOT apps on top of TockOS
2. Incremental rewrites of core RIOT modules in Rust
3. Prototype RIOT over async Rust framework (Embassy)

* See online https://future-proof-iot.github.io/RIOT-fp/about

About Embassy (and smoltcp)
Significant community active at https://github.com/embassy-rs/embassy

What does it provide we care about?

● Based on async Rust => naturally concurrent, no need for main loop
● HAL, timers, real-time, low-power, bluetooth, LoRa, USB, Bootloader + DFU, …

What does it not *really* do that we *really* care about?

● Implementation
○ 6lowpan/CoAP/OSCORE/RPL/… (IPv6 low-power stack)
○ Multiple timers (e.g., low-power *and* high frequency)
○ Threading
○ Secure standard OTA (SUIT?)
○ …

● Architectural / Integration
○ Application portability – even blinky code with Embassy is board-specific…
○ (On an arbitrary board, a relatively small time-to-hacking)

● Policy / Community Processes
○ Blob avoidance (e.g., drop softdevice, port nimBLE?)

So what about Embassy + RIOT threads?

https://github.com/embassy-rs/embassy
https://github.com/embassy-rs/embassy/blob/main/examples/nrf52840/src/bin/blinky.rs

About Embassy (and smoltcp)
Significant community active at https://github.com/embassy-rs/embassy

What does it provide we care about?

● Based on async Rust => naturally concurrent, no need for main loop
● HAL, timers, real-time, low-power, bluetooth, LoRa, USB, Bootloader + DFU, …

What does it not provide that we *really* care about?

● Implementation
○ 6LoWPAN/CoAP/OSCORE/RPL/… (IPv6 low-power stack)
○ Multiple timers (e.g., low-power *and* high frequency)
○ Threading
○ Secure standard OTA (SUIT?)
○ …

● Architectural / Integration
○ Application portability – even blinky code with Embassy is board-specific…
○ (On an arbitrary board, a relatively small time-to-hacking)

● Policy / Community Processes
○ Blob avoidance (e.g., drop softdevice?)

https://github.com/embassy-rs/embassy/blob/main/examples/nrf52840/src/bin/blinky.rs

About Embassy (and smoltcp)
Significant community active at https://github.com/embassy-rs/embassy

What does it provide we care about?

● Based on async Rust => naturally concurrent, no need for main loop
● HAL, timers, real-time, low-power, bluetooth, LoRa, USB, Bootloader + DFU, …

What does it not *really* do that we *really* care about?

● Implementation
○ 6lowpan/CoAP/OSCORE/RPL/… (IPv6 low-power stack)
○ Multiple timers (e.g., low-power *and* high frequency)
○ Threading
○ Secure standard OTA (SUIT?)
○ …

● Architectural / Integration
○ Application portability – even blinky code with Embassy is board-specific…
○ (On an arbitrary board, a relatively small time-to-hacking)

● Policy / Community Processes
○ Blob avoidance (e.g., drop softdevice, port nimBLE?)

So what about Embassy + RIOT threads?

https://github.com/embassy-rs/embassy/blob/main/examples/nrf52840/src/bin/blinky.rs

Agenda

1. RIOT: Why? How? What?
2. Rust: Why?
3. Rust-based RIOT: How?
4. What is RIOT-rs?
5. RIOT-rs performance? A preliminary evaluation
6. Debating embedded Rust and RIOT: where to now?

RIOT based on Async Rust

driversμkernel
(core / threads)

libs

HAL (cpu/board/periph)

sys

Drivers
(embedded-hal)

μkernel
(core / threads)

libs
(crates.io)

HAL (embassy)

sys
(crates.io)

C

Rust

app app
(+ libs)app

driversμkernel
(core)

libs

HAL (cpu/board/periph)

sys

RIOT + Rust wrappers
(C configs)

Cargo-built RIOT
(C with Rust core)

RIOT-rs
(Rust-based configs)

(bootloader) (bootloader) (bootloader)

app appapp

RIOT-rs prototype, in other words

core/ riot-rs-core

sys/ embassy-time, embassy-net+smoltcp

cpu/ embassy-nrf, -rp, -esp, ...

drivers/periph embedded-hal

drivers/ embedded-hal

pkg/ crates.io + pkg to integrate 3rd party

boards/* –

build system Cargo-driven

RIOT-rs Prototype

- Re-used RIOT Rust scheduler rewrite providing RIOT semantics
- Embassy HAL kicks in at initialisation, RIOT threads then run on the side
- C API bindings

- Main challenges addressed with the build system:
- Matching ~10 lines for build system & code for RIOT basic application!

- Cargo doesn’t do “BOARD=...”, only “--target thumbv7em-none-eabi”, needing the
application Cargo.toml to specify board specifics

- Embassy has arch specific initialization (nrf, rp, rsp)
- 1st shot at integration:

- riot-rs crate: going through standard hoops to select correct cpu/board/embassy setup
- wrapped Cargo in laze, allows “laze build --builder nrf52840dk” to nudge Cargo right

Agenda

1. RIOT: Why? How? What?
2. Rust: Why?
3. Rust-based RIOT: How?
4. What is RIOT-rs?
5. RIOT-rs performance? A preliminary evaluation
6. Debating embedded Rust and RIOT: where to now?

What We Can Say about RIOT-rs Prototype (so Far)

The implemented prototype works on a couple of different Cortex-M boards

➔ see code at https://github.com/future-proof-iot/RIOT-rs
➔ ready for porting to other cpu (RISC-V) and other boards

Preliminary micro-benchmarks of RIOT-rs vs RIOT-C

➔ core/threads have almost identical RAM/ROM/perf
➔ e.g., “thread_flags” has same performance

Some remarks/observations:

1. Rust needs LTO, code size otherwise huge
2. RIOT-c GCC+lto optimizes very well (bar is high ;)
3. Non-trivial code size comparison difficult due to issues with LLVM-only RIOT-C,

which is necessary for XLTO

https://github.com/future-proof-iot/RIOT-rs

What We Can Say about RIOT-rs Prototype (so Far)

➔ based on RIOT-rs core
◆ close-at-hand: implement MPU-based sandboxing for threads
◆ also within reach: multicore support (prototype has initial multicore support for raspi-pico)

➔ based on prototype integration
◆ close-at-hand: board specific (sensor) driver selection

Agenda

1. RIOT: Why? How? What?
2. Rust: Why?
3. Rust-based RIOT: How?
4. What is RIOT-rs?
5. RIOT-rs performance? A preliminary evaluation
6. Debating embedded Rust and RIOT: where to now?

The Horizon with Rust ?
(from our perspective, based on RIOT-rs experiments)

- We could retain the awesome sides of RIOT!
- Application portability, “batteries-included”
- Smooth transition seems possible, without loss of our (rich) functionalities

- We can improve embedded Rust
- Provide fully integrated system and distrib. (building on a decade of RIOT experience)

- We could fix some critical RIOT bottlenecks
- Better share burden of HAL, periph/driver devel. & maintenance
- Rationalize our broad, but uneven HW support
- More modern tooling & ergonomics : increased productivity in the long-run?

- We can gain security guarantees
- Memory safety
- (Proofs “for free” on a perimeter of critical modules e.g., “core/thread is panic-free”)

The Horizon with Rust ?
(from our perspective, based on RIOT-rs experiments)

- We could retain the awesome sides of RIOT!
- Application portability, “batteries-included”
- Smooth transition seems possible, without loss of our (rich) functionalities

- We can improve embedded Rust
- Provide fully integrated system and distrib. (building on a decade of RIOT experience)

- We could fix some critical RIOT bottlenecks
- Better share burden of HAL, periph/driver devel. & maintenance
- Rationalize our broad, but uneven HW support
- More modern tooling & ergonomics : increased productivity in the long-run?

- We can gain security guarantees
- Memory safety
- (Proofs “for free” on a perimeter of critical modules e.g., “core/thread is panic-free”)

A Step Back, Up for Debate

Is C is the future? Most probably not.

Is Rust the future? Could be!

Independently: memory safety is not a SHOULD. It’s a MUST.

Do we have the resources to tend towards memory safe RIOT-C? Most probably not.

What should we do about that ?

We already support + partly depend on Rust.

Should we embrace (much) more Rust ?

● If so how?
● Where do we want to be in 3-5 years from now?

A Step Back, Up for Debate

Is C is the future? Most probably not.

Is Rust the future? Could be!

Independently: memory safety is not a SHOULD. It’s a MUST.

Do we have the resources to tend towards memory safe RIOT-C? Most probably not.

What should we do about that ?

We already support + partly depend on Rust.

Should we embrace (much) more Rust ?

● If so how?
● Where do we want to be in 3-5 years from now?

That’s all folks! Time for Q&A

(The key questions are in the previous slide ;)

RIOT-rs prototype code More info on the RIOT-fp
research project

https://github.com/future-proof-iot/RIOT-rs
https://future-proof-iot.github.io/RIOT-fp/about

