The Peripheral Selftesting Shield Hunting Bugs in Loopback Mode

RIOT Summit 2023

18th September, 2023

Marian Buschsieweke

This talk is largely based on:

Marian Buschsieweke, Mesut Güneş: Automated Testing of Hardware Abstraction Layers on Microcontrollers, 20th edition of the Fachgespräch Sensornetze (FGSN 2023)

Background

- RIOT supports many Microcontroller Unit (MCU) families by many vendors
- for portable applications:
 - consistent APIs to access hardware required
 - \Rightarrow Hardware Abstraction Layers (HALs) for peripheral access
- peripherals vastly differ between MCU vendors and even families
- $\Rightarrow\,$ many peripheral drivers implementing the same HAL API

The company logos are registered trademarks of their respective owners. They do not indicate affiliation or endorsement and are used for illustration only.

- difficult to provide consistent behavior across MCUs
 - especially: corner cases & exotic features
- testing is difficult
 - software-only unit tests (not observing signals) not sufficient
 - attaching logic analyzer / scope to observe signals time consuming
 - manual effort to validate signals
- code often "fragile"
 - same peripheral + faster CPU \Rightarrow broken timing
 - different compiler optimization \Rightarrow broken timing
 - silicon bugs
 - $\Rightarrow\,$ rigorous and repeated testing required
- \Rightarrow lots of bugs in peripheral drivers

Qualitylcons from Noun Project, CC-BY-3.0

RIOT: Specific Challenges

- RIOT:
 - OS for MCUs with focus on IoT
 - developed by diverse community across the globe
 - $\Rightarrow\,$ distributed development model
- access to tools and hardware varies
- $\Rightarrow\,$ cannot rely on expensive testing equipment
- no single entity has access to all MCU families
- $\Rightarrow\,$ distributed testing approach required

Kevin Weiss et al.: **PHiLIP on the HiL: Automated Multi-platform OS Testing with External Reference Devices**, *arXiv:2107.07255 [eess.SY]*

- second MCU is connected to the device under test (DUT)
- directly interacts with the DUT
 - e.g. implements $\mathsf{I}^2\mathsf{C}$ peripheral to test $\mathsf{I}^2\mathsf{C}$ controller mode
- pros/cons:
 - + fully automated testing
 - + signal level verification of DUT
 - huge effort to setup
- $\Rightarrow\,$ excellent fit for CI

Kevin Weiss et al., arXiv:2107.07255 [eess.SY]

Previous Work Testing HALs: Jumper Wires

oomlout, CC BY-SA 2.0

- loop output signal back to input signal
 - e.g. UART RXD to TXD, GPIO output to input, etc.
 - check: RX data = TX data
- widely used (e.g. by Zephyr, RIOT, etc.)
- pros/cons:
 - + fully automated testing
 - + really cheap
 - time to setup
 - high false positive due to wrong wiring
 - no signal level verification
- $\Rightarrow~$ Good fit for distributed testing approach
 - But: Can we mitigate the issues?

Proposal: Replace Wires with a PCB

Costs for 1 pieces:

Position	Costs
РСВ	\$ 2
Parts	< \$ 8
Total	< \$ 10

Note: Hand soldering doesn't scale for mass production, shipping costs ignored

Costs: SMD Variant ("v0.3")

Position	Costs
PCBs	\$ 19.40
SMD Parts	\$ 62.87
SMD Assembly	\$ 29.65
Mandatory THT Parts	\$ 10.56
Shipping	\$ 31.27
Total	\$ 153.75

\approx \$ 3.08 per board + \approx 114 seconds of soldering^a

Note: Only THT parts to mate with the DUT are mandatory.

^a3 seconds per pin

Extension Board Format: Overview

SparkFun Electronics, CC BY 2.0

Adafruit Industries, CC BY-NC-SA 2.0

Quel.soler, CC BY-SA 4.0

Crash48, CC0 1.0

Extension Standard	l ² C	SPI	UART	PWM	ADC	GPIO	Adoption
Arduino UNO	1	1	1	1	1	1	High
Arduino Mega	\checkmark	1	1	1	✓	✓	Medium
Arduino MKR	1	1	1	1	1	1	Low
Arduino Nano	1	\checkmark	1	\checkmark	✓	\checkmark	Medium
Adafruit Feather	1	\checkmark	1	\checkmark	✓	\checkmark	High
D1 Mini	\checkmark	\checkmark	1	X	X	\checkmark	Low
Microduino	1	✓	\checkmark	✓	\checkmark	✓	Low
micro:bit	\checkmark	\checkmark	1	\checkmark	1	1	Low
Olimex UEXT	1	1	\checkmark	X	X	X	Low

Extension Board Format: Selection

MCU Family	Arduino UNO	ISP	Adafruit Feather
ATmega	Arduino UNO	1	Feather 328P
EFM32/EFR32/EZR32	-	-	Thing Plus Matter
ESP32	-	-	HUZZAH32
ESP32S2	-	-	Feather S2
ESP32S3	-	-	Feather S3
ESP8266	-	-	HUZZAH
FE310	HiFive 1	×	Thing Plus FE310
Kinetis	frdm-k64f	×	-
nRF51	nRF51 DK	1	-
nRF52	nRF52840 DK	1	Feather nRF52840 Express
nRF9160	nRF9160 DK	1	Thing Plus nRF9160
QN908×	QN9080-DK	×	-
RP2040	ArduPico	×	Feather RP2040
SAM3	Arduino Due	1	-
SAMD21	Arduino Zero	1	Feather M0 Express
SAMD5×	-	-	Feather M4 Express
SAML1×	-	-	Thing Plus SAMD51
STM32F4	Nucleo-F446RE	×	Feather STM32F405
13 other STM32	Nucleo-64 or Nucleo-144	×	-
Total	25	6	15

\Rightarrow widest support: Arduino UNO Shields

RIOT Summit 2023 • Marian Buschsieweke • Peripheral Selftesting Shield

Testing Approach

Unknown Author, Public Domain

Peripheral	Tested By	Shield Required?
GPIO	loop-back (two pins connected) I ² C GPIO extender	1 1
UART	loop-back (TXD to RXD) timer to estimate symbol rate	✓ ×
SPI	loop-back (serial out to serial in) CS connected to GPIO pin SCK connected to GPIO extender pin timer to estimate clock frequency	✓ ✓ ✓ ×
I ² C	I ² C GPIO extender GPIO extender pin connected to GPIO pin	1
ADC	connected to PWM DAC connected to 4 bit R-2R DAC	1 1
PWM	connected to ADC with low-pass filter	✓

Peripheral	Mode / Aspect	Covered By Test?	GPIO
GPIO	Floating Input Push-Pull Output Input with Pull-Up Input with Pull-Down Open-Drain Open-Drain with Pull-Up Interrupts	/ / / /	UART
UART	Data Integrity Symbol Rate Stop Bits Parity Bit Power Off Behavior	✓ (✓) ✓ (✓) (✓)	PWM 0,00 % 25,00 % 50,00 % 75,00 % 100,00 % ■ Fully Covered ■ Partially Covered ■ Not Covered

Test Coverage (2/3)

Peripheral	Mode / Aspect	Covered By Test?
SPI	Data Integrity Bit Order Clock Frequency Clock Polarity Clock Phase CS Signaling	✓ × (✓) ✓ ×
l ² C	Data Integrity Clock Frequency Clock Stretching	✓ × ×
ADC	Accuracy	✓
PWM	Duty Cycle Pulse Width Modulation (PWM) Frequency	✓ ×

Peripheral	Covered	Partially Covered	Not Covered
GPIO	7	0	0
UART	2	3	0
SPI	3	1	2
I ² C	1	0	2
ADC	1	0	0
PWM	1	0	1
Total	15	4	5

Testing App Design

Tami Nova from Noun Project

- single test application
 - \Rightarrow fast test cycle
 - $\Rightarrow\,$ detects resource conflicts between peripheral drivers
 - \Rightarrow downside: all periph drivers & test app need to fit ROM
- save ROM by
 - short, concise messages
 - reuse messages (e.g. starting test for %s)
 - print line numbers instead of descriptions on failed test
 - \Rightarrow much smaller than a description
 - $\Rightarrow\,$ comments in the source code can still provide context
- soft dependency (FEATURES_OPTIONAL) on peripherals
 - test app useful even if subset of peripherals provided

Demo Time

Magnus, CC BY-SA 2.0

Console output:

Failing source code:

981	/*	the GPIO extender is used by the I2C test and the ADC test, so only
982	*	initialize it once here */
983	if	(IS_USED(MODULE_PCF857X)) {
984		ASSERT(pcf857x_init(&egpios, ¶ms) == PCF857X_OK);
985	}	

 \Rightarrow I²C GPIO extender failed to initialize \Rightarrow issue with I²C driver or pin mapping

Console output:

```
make BOARD=arduino-due flash test -C tests/periph/selftest shield
main(): This is RIOT! (Version: 2023.10-devel-262-g6193c-peripheral-selftest)
[...]
self-testing peripheral drivers
_____
Starting test for GPIO at tests/periph/selftest_shield/main.c:283
Гокј
Γ...]
Starting test for GPIO-IRQ at tests/periph/selftest_shield/main.c:438
FAILURE in tests/periph/selftest_shield/main.c:478
FAILURE in tests/periph/selftest_shield/main.c:482
FAILURE in tests/periph/selftest_shield/main.c:487
FAILURE in tests/periph/selftest_shield/main.c:492
[FAILED]
[...]
SOME TESTS FAILED
```

Demo: Pass

```
make BOARD=nrf52840dk flash test -C tests/periph/selftest shield
make: Entering directory '/home/maribu/Repos/software/RIOT/peripheral-selftest/
    tests/periph/selftest shield'
Building application "tests_selftest_shield" for "nrf52840dk" with MCU "nrf52".
[...]
START
main(): This is RIOT! (Version: 2023.10-devel-262-g6193c-peripheral-selftest)
self-testing peripheral drivers
Starting test for GPIO at tests/periph/selftest_shield/main.c:283
Гок 1
Starting test for GPIO at tests/periph/selftest shield/main.c:305
Гокј
Γ...]
Starting test for SPI at tests/periph/selftest_shield/main.c:763
Гииј
```

ALL TESTS SUCCEEDED

Summary

- cheap PCB
 - \approx \$ 3 @ 50 pieces
 - < \$ 10 @ 1 piece
- fully automated testing convering 19 / 24 aspects
 - super fast test cycle
 - already found real world bugs
- easy and quick setup
- $\Rightarrow\,$ testing no longer a pain
- \Rightarrow hopefully lots of bugs get found and fixed!

Eko Purnomo from Noun Project, CC-BY-3.0

Handing Out Free PCBs

ideogram.ai

- handing out:
 - 40 pcs of the Peripheral Selftesting Shields
 - SMD-Variant, "v0.3", optional parts not populated
- eligible:
 - active contributors to RIOT
 - one PCB per person

