
RIOT over PIP: embedding secure online deployment

Safe post-issuance
software provisioning

Damien Amara
Gilles Grimaud

Summary
1.Online Software Provisioning

Introduction to online software deployment.

2.The Design of an Execute-in-Place FileSystem
Exploration of the xipfs module design and features enabling eXecute in Place capabilities.

3.Security Issues
Discussion of security concerns and challenges associated with online deployment.

4.PIP-MPU Design Principles
Overview of the design principles behind the PIP-MPU proto-kernel.

5.Porting RIOT over PIP-MPU
Steps and considerations when porting RIOT-OS onto the PIP-MPU proto-kernel.

Deployment “post issuance”

Timeline

1. Silicon Production
by the Chipmaker

2. Device production
by the Manufacturer

3. Device distribution
by the Retailer

4. Device usage
by the Consumer

Offline deployment

Online deployment

 3/16. G. Grimaud / D. Amara "Safe post-issuance software provisioning"

Online software provisioning for RIOT-OS

Why manufacturers look for Post-Issuance?
❖ Allows Execution of Single-Shot Software

Why retailers look for Post-Issuance?
❖ Enables Software Personalization

❖ Opens Support for Third-Party Software

Why consumers look for Post-Issuance?
❖ Enables Software Provisioning

“In an industrial mass-production setting, post-issuance deployment primarily allows for a basic
system image to be written to ROM, while still leaving the door open for future extensions,
amendments, and partnerships once millions of units are already deployed all around the world.”

 4/16. G. Grimaud / D. Amara "Safe post-issuance software provisioning"

How to support Post-Issuance in RIOT-OS?

Introducing the Execute-In-Place FileSystem (XIPFS)

The xipfs module delivers:

A streamlined file system for seamless software
provisioning across the entire IoT lifecycle.

 5/16. G. Grimaud / D. Amara "Safe post-issuance software provisioning"

How to support Post-Issuance in RIOT-OS?

Introducing the Execute-In-Place FileSystem (XIPFS)

The xipfs module delivers:

A streamlined file system for seamless software
provisioning across the entire IoT lifecycle.Demonstratio

n !

 6/16. G. Grimaud / D. Amara "Safe post-issuance software provisioning"

The design of an eXecute-In-Place File System

The devil is in the details :

- position independent code compilation

- global offset table online relocation

RAM Flash

RIOT
stack, data, heap

RIOT
code

Used by XiPFS
persistent data & code

file2 xor file3
stack, data, heap

file1
data

file2
code

file3
Code

Free

- syscall function table

- filesystem fragmentation

- … but also …
 7/16. G. Grimaud / D. Amara "Safe post-issuance software provisioning"

Security issue

 8/16. G. Grimaud / D. Amara "Safe post-issuance software provisioning"

Security issue

Demonstratio
n !

 9/16. G. Grimaud / D. Amara "Safe post-issuance software provisioning"

PIP-MPU design principles
1. Manage Memory Partitions using Memory Protection Unit

Dedicated address spaces where code can execute and perform read/write
operations. (Details in the following slide)

2. Provide Critical System Primitives
PIP-MPU is designed to perform critical system tasks:
 Memory Partitioning: Create and delete memory partitions;
 Execution Flow Transfer: on demand switch between partitions;
 Hardware Interrupt Handling: Redirected to the root partition;
 Hardware Register Access: under PIP-MPU supervision
 (addressing DMA security issue).

3. Prove Reliability of Features
Implemented in Gallina and formally proved using the Coq proof assistant.

 10/16. G. Grimaud / D. Amara "Safe post-issuance software provisioning"

Typical PIP-MPU hardware

❖ IoT microcontroller for
mass-market production

❖ Our prototypes run on
DWM1001

❖ RAM: 64Kb

❖ Flash: 512Kb

❖ ARM Cortex M3

 11/16. G. Grimaud / D. Amara "Safe post-issuance software provisioning"

Memory Partitioning

Memory Space

PIP

Root Partition

Partition P1

Partition
P22

Partition P2

Partition
P21

 12/16. G. Grimaud / D. Amara "Safe post-issuance software provisioning"

Porting RIOT over PIP-MPU

RIOT

Running File

 13/16. G. Grimaud / D. Amara "Safe post-issuance software provisioning"

PIP

Memory Space

Porting RIOT over PIP-MPU

RIOT

Running File

 14/16. G. Grimaud / D. Amara "Safe post-issuance software provisioning"

PIP

Memory Space

Demonstratio
n !

Conclusion

Safe and Secure Post-Issuance Software Deployment
Is Possible:

 xipfs requires 12 bytes of RAM and 1058 bytes of Flash

 PIP-MPU requires 3028 bytes of RAM and 28988 of Flash

Memory partitioning through MPU slows down code
execution by 5 to 10% (further investigation ongoing).

 15/16. G. Grimaud / D. Amara "Safe post-issuance software provisioning"

Questions ?

 16/16. G. Grimaud / D. Amara "Safe post-issuance software provisioning"

Sources available @

https://pip.univ-lille.fr
https://github.com/2xs

https://github.com/2xs/pipcore-mpu

and as soon as possible
a pull request of the xipfs module in riot-os :)

https://pip.univ-lille.fr
https://github.com/2xs
https://github.com/2xs/pipcore-mpu

Why Does PIP-MPU Impact ARM CPU Efficiency?

Where Are ARM Cycles Lost?

The loss of CPU cycles is proportional to the time spent executing within memory partitions,
specifically due to interruption handling and system call handling via PIP-MPU. In detail:

1. Interruption Handling with PIP-MPU:
PIP-MPU serves as the interrupt handler, much like a standard OS. Minimal cycles are lost here ;

2. State Saving of Interrupted Partition:
We optimize by saving only the general-purpose registers and defer saving floating-point unit registers
(Lazy FPU context switching) unless another partition requires them. No cycles are lost when the FPU is not
used ;

3. MPU Configuration Restoration for Root Partition:
This is the main source of cycle overhead, costing hundreds of cycles. PIP-MPU must emulate an "idealized"
MPU configuration (a kind of virtual MPU), which incurs this cost;

4. Context Restoration to Virtual Interrupt Handler:
Here, additional cycles are lost, consistent with any hypervisor—approximately one CPU state load (~32
cycles).

 17/16. G. Grimaud / D. Amara "Safe post-issuance software provisioning"

Why Run RIOT-OS on PIP-MPU Instead of
Embedding MPU Management in xipfs?

[Pro] Robust MPU Management:

PIP-MPU uses Gallina to implement MPU management, minimizing risks like stack smashing and buffer
overflows.

[Pro] Formally Verified:

PIP-MPU comes with a Coq proof. When you request a memory partition, the isolation of the partition is
proven to be guaranteed.

[Pro] Reduced Error Probability:

Implementing MPU management manually can be complex and error-prone. it's proven that PIP-MPU
avoids this risk.

[Cons] Security Limitations:

While PIP-MPU ensures robust partitioning, it cannot extend this guarantee to code executed in place via
xipfs. RIOT-OS serves as an intermediary layer between PIP-MPU and the child partition, and although it's
not formally verified, it's part of the trusted computing base for the child partition. Because RIOT-OS, the
intermediary layer, is susceptible to security vulnerabilities like buffer overflows, it compromises the trusted
computing base of the child partition, thereby potentially undermining the child partition's own security…

 18/16. G. Grimaud / D. Amara "Safe post-issuance software provisioning"

Why Run RIOT-OS Over PIP-MPU Instead of
Making PIP-MPU a Module in RIOT-OS?

Proof Integrity:
Proving PIP-MPU's isolation guarantees requires it to operate independently of any external modules. This
is the last of the three proofs done in PIP-MPU :

1. Horizontal isolation ; 2. Vertical sharing ; 3. PIP-MPU isolation

Immutable Code:
PIP-MPU's code must not be modifiable. This integrity is achieved because everything within PIP-MPU is
formally verified. When embedding PIP-MPU in RIOT-OS, this part of the proof is lost.

Data Structure Modification Constraints:
Any changes to PIP-MPU data structures must adhere to isolation constraints. Embedding PIP-MPU in
RIOT-OS would require proving the isolation of PIP-MPU for each memory access in RIOT-OS, however
RIOT-OS is not written in Gallina.

Hardware Configuration Security:
External hardware configurations, like DMA settings, should not compromise MPU settings by PIP-MPU.
By running PIP-MPU as a lower-level layer, hardware drivers have to request changes through PIP-MPU,
which only allows secure hardware configurations, such as DMA settings.

 19/16. G. Grimaud / D. Amara "Safe post-issuance software provisioning"

Writing a kernel in Galina-c?
Why Galina-C?

Directly maps to C: What you see in galina-c is what you get in C. No runtime required.

Security Guarantees: MPU Configuration: Execution in galina-c configures the MPU such that only
partition-specific memory is accessible.

How It Works

Proof on galina-c: Formal verification is conducted on the galina-c code.

DX tool: A galina-based tool called "dx" converts galina-c to C. The tool itself can be formally verified.

Proof Continuity

CompCert: Allow to transform the proved C code into machine code while maintaining the proof integrity.

Security Guarantees

MPU Configuration: Execution in galina-c configures the MPU such that only partition-specific memory is
accessible.

 19/16. G. Grimaud / D. Amara "Safe post-issuance software provisioning"

The Devil’s in the Details
Position Independent Code Compilation:

Utilization of the -fPIC, -msingle-pic-base, -mpic-register=r10, flag in GCC.

Less significant for ARM architectures, which are inherently designed for Position Independent Code.

Global Offset Table (GOT) and Dynamic Relocation:

a dedicated CRT0 initializes RAM, based on the address provided by xipfs to store data.

System Call Function Table:

To allow dynamically loaded code to invoke RIOT functions:
 a function table is passed as a parameter from RIOT to the "CRT0" of the called program.

Filesystem Fragmentation and Contiguity:

xipfs allocates a minimum of 4K pages (flash memory page size).

Executables are stored contiguously in memory.

Deletion of a file triggers memory defragmentation to ensure contiguous loading.

 19/16. G. Grimaud / D. Amara "Safe post-issuance software provisioning"

