



# U-TOE - Universal TinyML On-board Evaluation Toolkit for Low-Power IoT

**RIOT Summit, 2023** 

### Zhaolan Huang, MSc

Freie Universität Berlin

collaborative work with K. Zandberg, K. Schleiser, and E. Baccelli (Inria)

19.09.2023



## AI is invading everything

- Automation, healthcare, financial, cyber-security...
- Become significant components and even the core of systems.



## Al is invading everything

- Automation, healthcare, financial, cyber-security...
- Become significant components and even the core of systems.

## Al at edge is a trend

For privacy and efficacy reasons, operating AI at the edge of the network (closest to data origin) is more desirable.

- On-site processing of sensor data.
- Reduce latency and communication bandwidth.

#### Agenda



- Crash course
  - (Tiny) Machine Learning
  - Deep Learning: Neural Network
- Challenges and Related Works
  - Challenges in TinyML
  - Related Works
- U-TOE Design and Workflow
  - Architectural Design
  - Workflow using U-TOE
- Preliminary Experimental Results
- Perspectives and Conclusion
  - Perspectives
  - Conclusion

### Agenda



### • Crash course

- (Tiny) Machine Learning
- Deep Learning: Neural Network
- Challenges and Related Works
  - Challenges in TinyML
  - Related Works
- U-TOE Design and Workflow
  - Architectural Design
  - Workflow using U-TOE
- Preliminary Experimental Results
- Perspectives and Conclusion
  - Perspectives
  - Conclusion



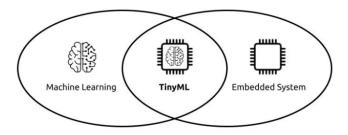
## Machine Learning (ML)

- Complex, compute-intensive algorithms.
- Data-driven decision making.
- Most popular model: (Deep) Neural Network.



## Tiny Machine Learning (TinyML)

- Complex, compute-intensive algorithms.
- Data-driven decision making.
- Most popular model: (Deep) Neural Network.
- Deploy on resource-constrained devices.



TinyML: Machine Learning + Embedded System



#### ML Model

Computational representation of a real-world process or system

- (Mathematically) A Function with tunable parameters that maps input data to predictions
- Learns from data (Model Training)
- A trained neural network is a ML model



#### ML Model

Computational representation of a real-world process or system

- (Mathematically) A Function with tunable parameters that maps input data to predictions
- Learns from data (Model Training)
- A trained neural network is a ML model

#### Training and Inference

- Training: Modifying model's parameters based on numerous data to approximate real-world process
- Inference: Using a trained model to make predictions or decisions on new, unseen data



#### ML Model

Computational representation of a real-world process or system

- (Mathematically) A Function with tunable parameters that maps input data to predictions
- Learns from data (Model Training)
- A trained neural network is a ML model

#### Training and Inference

- Training: Modifying model's parameters based on numerous data to approximate real-world process
- Inference: Using a trained model to make predictions or decisions on new, unseen data
- ► U-TOE focuses model inference on low-power devices.

### Agenda

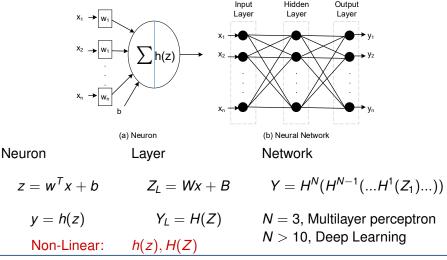


#### Crash course

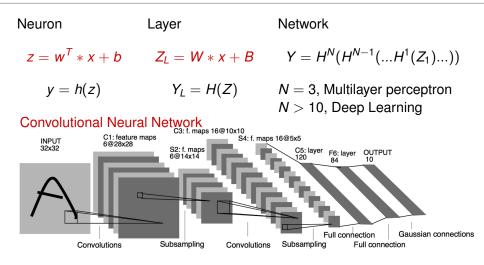
- (Tiny) Machine Learning
- Deep Learning: Neural Network
- Challenges and Related Works
  - Challenges in TinyML
  - Related Works
- U-TOE Design and Workflow
  - Architectural Design
  - Workflow using U-TOE
- Preliminary Experimental Results
- Perspectives and Conclusion
  - Perspectives
  - Conclusion



#### Layer-wise (non-linear) function composition



Deep Learning: Neural Network (NN)



Freie Universität

Berlin



## Model Building Blocks: Operators

Affine Transformations (z): Convolution, matrix multiplication, addition...
 Multiplication: Z<sub>L</sub> = Wx + B, O(MN), with W : MxN
 2D-Convolution: Z<sub>L</sub> = W \* X + B, O(N<sup>2</sup>K<sup>2</sup>), with W : KxK, X : NxN
 In practice: K = 1, 3, 5, 7
 → Compute-intensive in order of input dimension N



## Model Building Blocks: Operators

- Affine Transformations (z): Convolution, matrix multiplication, addition...
  Multiplication: Z<sub>L</sub> = Wx + B, O(MN), with W : MxN
  2D-Convolution: Z<sub>L</sub> = W \* X + B, O(N<sup>2</sup>K<sup>2</sup>), with W : KxK, X : NxN
  In practice: K = 1, 3, 5, 7
  - $\rightarrow$  Compute-intensive in order of input dimension N
- Non-linear Operators (h(z)): Pooling, activation functions, (batch) normalization, dropout, quantization...



### Major ML Frameworks

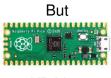
Tensorflow (Google), PyTorch (Meta AI & Linux Foundation), Keras, MXNet...Used for building neural network models in few lines



- Crash course
  - (Tiny) Machine Learning
  - Deep Learning: Neural Network
- Challenges and Related Works
  - Challenges in TinyML
  - Related Works
- U-TOE Design and Workflow
  - Architectural Design
  - Workflow using U-TOE
- Preliminary Experimental Results
- Perspectives and Conclusion
  - Perspectives
  - Conclusion

So, that elephant will be stuffed into tiny devices...





Freie Universität

264KB Memory

Berlin



So, that elephant will be stuffed into tiny devices...

- Resource Constraints: Processor(s), storage, memory.
- Real-time Processing: Real-time inference in critical applications.
- Power Efficiency: Do <u>FAST</u>, sleep more.
- Model Size: Prototype and optimize neural networks under resource budget within multiple iterations.

Freie Universität

So, that elephant will be stuffed into tiny devices...

- Resource Constraints: Processor(s), storage, memory.
- Real-time Processing: Real-time inference in critical applications.
- Power Efficiency: Do <u>FAST</u>, sleep more.
- Model Size: Prototype and optimize neural networks under resource budget within multiple iterations.

## **Problem Statement**

Thus, we need a toolkit for

- Model Evaluation: Consumption of resources
- Bottleneck Location: Know where to shape
- Hardware Selection: Provide MCU candidates



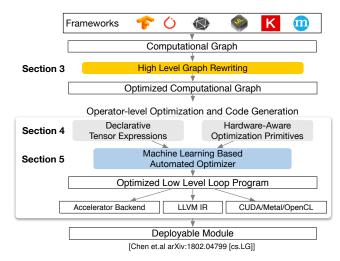
- Crash course
  - (Tiny) Machine Learning
  - Deep Learning: Neural Network
- Challenges and Related Works
  - Challenges in TinyML
  - Related Works
- U-TOE Design and Workflow
  - Architectural Design
  - Workflow using U-TOE
- Preliminary Experimental Results
- Perspectives and Conclusion
  - Perspectives
  - Conclusion



- Model Compilation
- Model Profilers
- Benchmarking Suites and TinyML Benchmarks
- Low-power IoT Platform and Testbeds

Freie Universität

Model Compilation: (micro) TVM





#### Model Profilers

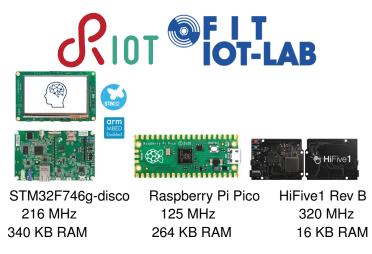
- Internal tools of major ML frameworks (Tensorflow, Pytorch, MXNet...): merely support on various IoT boards.
- ML-EXray: Easy to use, but not support IoT boards.



- Benchmarking Suites and TinyML Benchmarks
  - MLPerf Tiny: Standard benchmark suite with representative ML models.
  - Prior TinyML benchmarks focuses on comparison of specific frameworks on specific boards for specific tasks.



Low-power IoT Platform and Testbed





After reviewing prior work, we still can't conveniently evaluate customized models from arbitrary ML frameworks on arbitrary low-power IoT boards, there is a gap from ML models to boards.



- Crash course
  - (Tiny) Machine Learning
  - Deep Learning: Neural Network
- Challenges and Related Works
  - Challenges in TinyML
  - Related Works
- U-TOE Design and Workflow
  - Architectural Design
  - Workflow using U-TOE
- Preliminary Experimental Results
- Perspectives and Conclusion
  - Perspectives
  - Conclusion



The goals of U-TOE are automatically compressing, flashing and evaluating arbitrary models on arbitrary commercial off-the-shelf low-power boards.

### **Performance Metrics**

- Memory (RAM) Consumption
- Storage (Flash) Consumption
- Computational Latency



The goals of U-TOE are automatically compressing, flashing and evaluating arbitrary models on arbitrary commercial off-the-shelf low-power boards.

### Performance Metrics

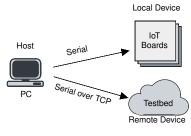
- Memory (RAM) Consumption
- Storage (Flash) Consumption
- Computational Latency

## Granularity

- Per-Model Evaluation
- Per-Operator Evaluation

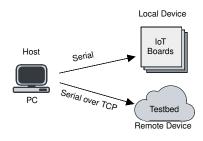
### **Architectural Design**





(a) Hardware Configuration



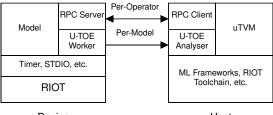


(a) Hardware Configuration

You don't have boards in hand?

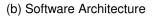
No Problem! Try out remote boards on FIT IoT-LAB Testbed!





Device

Host







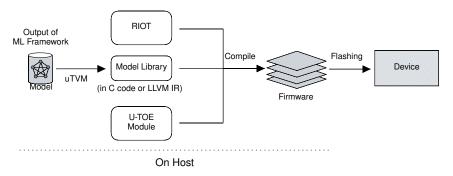
- Crash course
  - (Tiny) Machine Learning
  - Deep Learning: Neural Network
- Challenges and Related Works
  - Challenges in TinyML
  - Related Works
- U-TOE Design and Workflow
  - Architectural Design
  - Workflow using U-TOE
- Preliminary Experimental Results
- Perspectives and Conclusion
  - Perspectives
  - Conclusion



From NN models to boards...



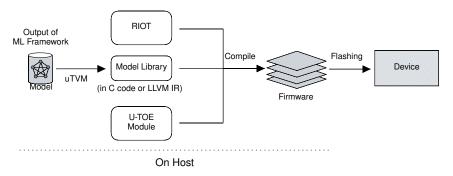
#### From NN models to boards...



### 1. TVM translates NN model into C / LLVM IR.



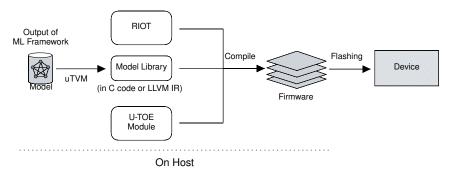
## From NN models to boards...



- 1. TVM translates NN model into C / LLVM IR.
- 2. Co-compile with RIOT and U-TOE module.



From NN models to boards...



- 1. TVM translates NN model into C / LLVM IR.
- 2. Co-compile with RIOT and U-TOE module.
- 3. Flash to board and log back performance metrics.



- Crash course
  - (Tiny) Machine Learning
  - Deep Learning: Neural Network
- Challenges and Related Works
  - Challenges in TinyML
  - Related Works
- U-TOE Design and Workflow
  - Architectural Design
  - Workflow using U-TOE
- Preliminary Experimental Results
- Perspectives and Conclusion
  - Perspectives
  - Conclusion



## Model Zoo: Quantized to INT8.

| Model (# Parameters)     | Task                 | Remarks                    |
|--------------------------|----------------------|----------------------------|
| LeNet-5 (~40K)           | Image Classification | -                          |
| MobileNetV1 (~500K)      | Visual Wake Words    | With width multiplier 0.25 |
| DS-CNN Small (~22K)      | Keyword Spotting     | Depthwise separable CNN    |
| Deep AutoEncoder (~264K) | Anomaly Detection    | -                          |
| RNNoise (~87K)           | Noise Suppression    | GRU-based network          |
| Sinus (~0.30K)           | Regression           | TFLite sine value example  |

MCU Zoo: ARM Cortex M0+, M3, M4, M7 and RISC-V





#### Evaluation results of LeNet5 on various IoT boards.

| Board              | Core             | Memory  | Storage | Latency |
|--------------------|------------------|---------|---------|---------|
| arduino-zero       | M0+ @ 48 MHz     | 11.292  | 64.940  | 182.068 |
| rpi-pico           | M0+ @ 125 MHz    | 28.704  | 109.504 | 70.117  |
| openmote-b         | M3 @ 32 MHz      | 11.100  | 66.080  | 200.367 |
| IoT-LAB M3         | M3 @ 72 MHz      | 11.296  | 62.260  | 97.751  |
| nucleo-wl55jc      | M4 @ 48 MHz      | 11.288  | 63.180  | 98.661  |
| nrf52840dk         | M4 @ 64 MHz      | 11.348  | 61.332  | 66.088  |
| b-l475e-iot01a     | M4 @ 80 MHz      | 11.288  | 61.604  | 52.901  |
| stm32f746g-disco   | M7 @ 216 MHz     | 11.076  | 64.712  | 39.601  |
| esp32c3-devkit     | RISC-V @ 80 MHz  | 258.874 | 222.272 | 54.953  |
| sipeed-longan-nano | RISC-V @ 108 MHz | 103.108 | 106.422 | 37.789  |
| hifive1b           | RISC-V @ 320 MHz | 60.884  | 66.492  | 153.747 |

Memory and storage consumption in KB, computational latency in ms.



#### Evaluation of various models on stm32f746-disco board.

| Model             | Task                 | Memory  | Storage | Latency  |
|-------------------|----------------------|---------|---------|----------|
| DS-CNN Small      | Keyword Spotting     | 68.992  | 71.796  | 461.396  |
| MobileNetV1-0.25x | Visual Wake Words    | 185.352 | 491.668 | 1435.938 |
| LeNet-5           | Image Classification | 12.068  | 65.851  | 39.601   |
| Deep AutoEncoder  | Anomaly Detection    | 6.532   | 292.696 | 35.638   |
| RNNoise           | Noise Suppression    | 4.688   | 119.652 | 12.154   |

Memory and storage consumption in KB, computational latency in ms.



#### Evaluation of various models on stm32f746-disco board.

| Model             | Task                 | Memory  | Storage | Latency  |
|-------------------|----------------------|---------|---------|----------|
| DS-CNN Small      | Keyword Spotting     | 68.992  | 71.796  | 461.396  |
| MobileNetV1-0.25x | Visual Wake Words    | 185.352 | 491.668 | 1435.938 |
| LeNet-5           | Image Classification | 12.068  | 65.851  | 39.601   |
| Deep AutoEncoder  | Anomaly Detection    | 6.532   | 292.696 | 35.638   |
| RNNoise           | Noise Suppression    | 4.688   | 119.652 | 12.154   |

Memory and storage consumption in KB, computational latency in ms.

### Per-Operator Evaluation Output of TFlite sinus model.

| Ops           | Latency | Latency (%) | Asso. Params | Memory | Storage |
|---------------|---------|-------------|--------------|--------|---------|
| add_nn_relu   | 8.856   | 15.22%      | p0, p1       | 0.128  | 0.128   |
| add_nn_relu_1 | 46.682  | 80.23%      | p2, p3       | 0.128  | 1.088   |
| add           | 2.646   | 4.54%       | p4, p5       | 0.068  | 0.068   |

Memory and storage consumption in KB, computational latency in us.



Now, we successfully built a generic solution for performance evaluation of neural network models on various IoT boards, but it still lack of...



- Crash course
  - (Tiny) Machine Learning
  - Deep Learning: Neural Network
- Challenges and Related Works
  - Challenges in TinyML
  - Related Works
- U-TOE Design and Workflow
  - Architectural Design
  - Workflow using U-TOE
- Preliminary Experimental Results
- Perspectives and Conclusion
  - Perspectives
  - Conclusion



# Further Development & Community Support



Further Development & Community Support

(Ongoing) GUI for user-friendly interaction



- Further Development & Community Support
  - (Ongoing) GUI for user-friendly interaction
  - Co-evolve with RIOT hardware support and OS functionalities, potentially as RIOT pkg



- Further Development & Community Support
  - (Ongoing) GUI for user-friendly interaction
  - Co-evolve with RIOT hardware support and OS functionalities, potentially as RIOT pkg
  - Numerical issue in TVM: https://github.com/apache/tvm/issues/15285 (Keyword: *inconsistent results*), need interaction with TVM community.



- Further Development & Community Support
  - (Ongoing) GUI for user-friendly interaction
  - Co-evolve with RIOT hardware support and OS functionalities, potentially as RIOT pkg
  - Numerical issue in TVM: https://github.com/apache/tvm/issues/15285 (Keyword: *inconsistent results*), need interaction with TVM community.
- Extended ML Support



- Further Development & Community Support
  - (Ongoing) GUI for user-friendly interaction
  - Co-evolve with RIOT hardware support and OS functionalities, potentially as RIOT pkg
  - Numerical issue in TVM: https://github.com/apache/tvm/issues/15285 (Keyword: *inconsistent results*), need interaction with TVM community.
- Extended ML Support
  - Support on-device learning scenario



- Further Development & Community Support
  - (Ongoing) GUI for user-friendly interaction
  - Co-evolve with RIOT hardware support and OS functionalities, potentially as RIOT pkg
  - Numerical issue in TVM: https://github.com/apache/tvm/issues/15285 (Keyword: *inconsistent results*), need interaction with TVM community.
- Extended ML Support
  - Support on-device learning scenario
  - Support ML models other than neural network



- Further Development & Community Support
  - (Ongoing) GUI for user-friendly interaction
  - Co-evolve with RIOT hardware support and OS functionalities, potentially as RIOT pkg
  - Numerical issue in TVM: https://github.com/apache/tvm/issues/15285 (Keyword: *inconsistent results*), need interaction with TVM community.
- Extended ML Support
  - Support on-device learning scenario
  - Support ML models other than neural network
  - Generalize to compute-intensive tasks

Freie Universität

Compile, link, flash and execute U-TOE for model Sinus on FIT IoT-lab testbed.

2023-06-07 14:13:15,449 # main(): This is RIOT! (Version: 9515d-wip/utvm) 2023-06-07 14:13:15.452 # U-TOE Per-Model Evaluation 2023-06-07 14:13:15,454 # Press any key to start > 2023-06-07 14:13:17,149 # trial: 0, usec: 154938, ret: 0 2023-06-07 14:13:17,305 # trial: 1, usec: 153900, ret: 0 2023-06-07 14:13:17,461 # trial: 2, usec: 153748, ret: 0 2023-06-07 14:13:17,617 # trial: 3, usec: 153717, ret: 0 2023-06-07 14:13:17.773 # trial: 4. usec: 153717. ret: 0 2023-06-07 14:13:17,929 # trial: 5, usec: 153717, ret: 0 2023-06-07 14:13:18,085 # trial: 6, usec: 153717, ret: 0 2023-06-07 14:13:18,241 # trial: 7, usec: 153748, ret: 0 2023-06-07 14:13:18,397 # trial: 8, usec: 153717, ret: 0 2023-06-07 14:13:18,553 # trial: 9, usec: 153717, ret: 0 2023-06-07 14:13:18,555 # Evaluation finished >



- Crash course
  - (Tiny) Machine Learning
  - Deep Learning: Neural Network
- Challenges and Related Works
  - Challenges in TinyML
  - Related Works
- U-TOE Design and Workflow
  - Architectural Design
  - Workflow using U-TOE
- Preliminary Experimental Results
- Perspectives and Conclusion
  - Perspectives
  - Conclusion

Freie Universität

- Provided open-source, generic model-to-board evaluation solution.
- Provided comparative experimental benchmarks using U-TOE, reproducible both on an openaccess IoT testbed and on PC.

Thanks! And Questions?

arXiv:

arXiv

Code: https://github.com/zhaolanhuang/U-TOE

E-Mail: zhaolan.huang@fu-berlin.de

If you want to cite this work, please use: Z. Huang, K. Zandberg, K. Schleiser, E. Baccelli. U-TOE: Universal TinyML On-board Evaluation Toolkit for Low-Power IoT. In Proc. of 12th IFIP/IEEE PEMWN, Sept. 2023.

https://arxiv.org/abs/2306.14574

Acknowledgment: We would like to thank Cedric Adjih and Nadjib Achir for useful discussions and suggestions. The research partly received funding from the MESRI-BMBF German/French cybersecurity program under grant agreements No. ANR-20-CYAL-0005 and 16KIS1395K. This work reflects only the authors' views.





