
MnemOS
an operating system for
building small computers

James Munns
OneVariable UG

contact@onevariable.com

RIOT Summit 2023
2023-09-18

mailto:contact@onevariable.com

MnemOS is a hobby
operating system.

The name comes
from Mnemosyne

The Greek goddess of memory, and
mother of the nine muses

Antique mosaic of Mnemosyne, National
Archaeological Museum of Tarragona

https://en.wikipedia.org/wiki/National_Archaeological_Museum_of_Tarragona
https://en.wikipedia.org/wiki/National_Archaeological_Museum_of_Tarragona

You will be able to
poke holes in the
claims and details.

● “Well actually”
● “What about?”
● “Why didn’t you?”
● “Why not…”

Don’t overthink it.

It doesn’t have to
make sense, it has to
be fun.

But first a little
context…

Embedded systems
typically come in one
of two flavors today:

The “big” option:
Embedded Linux

● Yocto
● Buildroot
● OpenWRT
● Raspbian

The “small” option:
Bare Metal/RTOS

● Vendor HALs
● FreeRTOS
● Zephyr
● RIOT-OS
● Embassy
● RTIC
● Arduino
● Open Source HALs
● Hundreds of other

options

Linux is better for
some stuff…

● Networking
● Filesystems
● Portability
● Existing tools + SW
● Hiring developers
● Orchestration
● Isolation or

Containerization
● Graphical interfaces

Bare Metal/RTOS is
better for some
stuff…

● Hard real-time
● MCUs
● Low power
● Custom hardware

and drivers
● Auditability
● Customization

You could usually
do any of this with
either choice…

It just might suck.

I do a lot of
projects
“in the between”

I often need:

● Networking
● Observability
● Filesystems
● Custom drivers +

hardware
● Soft real-time
● Low power

MnemOS is an
operating system for
the Liminal Space
between other options.

MnemOS is
designed for
Small Computers.

● Network
Connected

● User interfaces
● Dynamic

applications
● Limited power

and performance

It prioritizes my
favorite things

● Willing to require
non-minimal HW

● Must play nice with other
computers

● Soft real-time is usually
enough

● Relatively portable
● Relatively flexible

It is willing to steal
any good idea
from the last 55
years of computer
science.

● Embedded systems
● Language design
● Backend servers
● Desktop OSs
● Server OSs

So what did we steal?

Or: What design choices did we make?

Async-first
operational model
aka: “co-operative multitasking”

Stolen from:

● async/await in
Rust

● Asyncio in Python
● NodeJS
● NGINX
● Protothreads

Why async?

● Hardware is usually
event-driven

● Rarely CPU bound
● Smaller systems often

only have one core
● Very power/resource

friendly
● Userspace still

preemptive, kinda

Message Passing
as the primary
interface style

Stolen from:

● Erlang
● Smalltalk
● Distributed

Systems

Why Message
Passing?

● Fewer “ABI” concerns
● Channels, Queues, etc.

play great with async
● Messages can come

from/go to:
○ Within the kernel
○ Userspace
○ External systems

● [De]serialization can be
very fast.

io_uring or iocp
for userspace API

Stolen from:

● Linux
● Windows

Why io_uring or
iocp?

● Better fit for async, vs
traditional syscalls

● Messages can easily be
serialized to a ring buffer

● You only need one real
system call: “yield”.

Flexible Kernel
Setups
aka: “make the OS a library, not a
distribution”

Similar in effect to:

● BSD Rump Kernels
● C++ IncludeOS

Why Flexible
Kernel Setups?

● Make it easier to run
anywhere

● Let the integrator make
“last mile” OS choices
(with real code!)

● Easy to run on a 32-bit
MCU or 64-bit CPU

● Reuse whatever HAL you
already have today

Distributed-first
system design

Stolen from:

● Backend Servers
● Transputers
● Erlang (again)

Many CPUs in
one package…

Allwinner
R128
Block
Diagram

RISC-V 64

Xtensa LX7

Cortex-M

Many CPUs on
one board…

● Main CPU
● GPU
● Wifi controller
● Eth controller
● SSD/HDD controller

Why distributed
first design?

● A “computer” is really lots
of littler computers

● We should treat it like a
real network

● What if we could run the
same kernel and comms
stack everywhere?

Okay but what actually
works today?

Kernel Basics
● Memory Allocation
● Kernel Async Scheduler
● Message Passing
● Service Discovery

Kernel
Basics

Creature
Comforts

● Basic User Interfaces
● Forth Scripting
● Multiplexed UARTs
● Kernel Tracing

Creature
Comforts

Creature
Comforts

Platform
Support

● Allwinner D1 (64-bit RISC-V)
○ 1 GHz, 512MiB RAM

● ESP32C3 (32-bit RISC-V)
○ 160MHz, 400KiB RAM

● x86_64 (QEMU)
● Simulators:

○ Melpomene (native)
○ Pomelo (WASM)

Platform
Support
Beepy by
SQFMI + Beeper
and Mango Pi
MQ-Pro

What’s Next?
● Message Passing

Overhaul
● Inter-system

communication protocol
● Reintroducing userspace

and user programs

● Main Docs
○ https://mnemos.dev/

● GitHub
○ https://github.com/tosc-rs/mnemos

● Matrix Chat
○ https://matrix.to/#/#mnemos-dev:beeper.com

https://mnemos.dev/
https://github.com/tosc-rs/mnemos

MnemOS
an operating system for
building small computers

James Munns
OneVariable UG

contact@onevariable.com

RIOT Summit 2023
2023-09-18

mailto:contact@onevariable.com

