
Automated Testing of Stateful Network
Protocol Implementations in the IoT

Sören Tempel1, Rolf Drechsler1,2

tempel@uni-bremen.de
1Group of Computer Architecture, University of Bremen, Germany

2Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

1/17



Motivation

Background: IoT nodes exchange data via network protocols
▶ Protocol implementations often contain software bugs
▶ Some of these bugs (e.g. buffer overflows) are exploitable
▶ Problematic since IoT operating systems have few exploit mitigations

Goal: Automatically find such bugs in network modules
⇒ Emerging method for this purpose: symbolic execution

2/17



Background: Symbolic Execution

Idea: Enumerate reachable paths based on specific input source
▶ SW executed with symbolic values, represent set of concrete values
▶ Symbolic values are continuously constrained during execution
▶ Constraints on current path: path constraints (PC)

DSE: Dynamic Symbolic Execution
▶ Concrete execution drives symbolic execution
▶ Track symbolic constraints alongside concrete execution
▶ Branches are collected; later negated with an SMT solver

3/17



Background: Symbolic Execution

Idea: Enumerate reachable paths based on specific input source
▶ SW executed with symbolic values, represent set of concrete values
▶ Symbolic values are continuously constrained during execution
▶ Constraints on current path: path constraints (PC)

DSE: Dynamic Symbolic Execution
▶ Concrete execution drives symbolic execution
▶ Track symbolic constraints alongside concrete execution
▶ Branches are collected; later negated with an SMT solver

3/17



Dynamic Symbolic Execution (1/3)

Example:
void myfunc(int a) {

if (a > 8)
// ...

else
// ...

if (a < 5)
// ...

else
// ...

}

void myfunc(int a) {
if (a > 8)

// ...
else

// ...

if (a < 5)
// ...

else
// ...

}

PC: T

PC: (a > 8)

...
PC: (a > 8)
∧¬(a < 5)

F

T
...

4/17



Dynamic Symbolic Execution (1/3)

Example: Execution trace for myfunc with input a = 9

void myfunc(int a) {
if (a > 8)

// ...
else

// ...

if (a < 5)
// ...

else
// ...

}

PC: T

PC: (a > 8)

...
PC: (a > 8)
∧¬(a < 5)

F

T
...

4/17



Dynamic Symbolic Execution (2/3)

Exploration: Negate unexplored branch ¬(a > 8), solve resulting query
⇒ Restart execution with concrete input (e.g. a = 8)

void myfunc(int a) {
if (a > 8)

// ...
else

// ...

if (a < 5)
// ...

else
// ...

}

PC: T

PC: (a > 8)

...
PC: (a > 8)
∧¬(a < 5)

F

T

PC: ¬(a > 8)

...
PC: (a > 8)
∧¬(a < 5)

F

F

5/17



Dynamic Symbolic Execution (3/3)

Goal: Ideally discover all execution paths
⇒ Repeat until all branches have been negated

void myfunc(int a) {
if (a > 8)

// ...
else

// ...

if (a < 5)
// ...

else
// ...

}

PC: T

PC: (a > 8)

PC: (a > 8)
∧(a < 5)

T
PC: (a > 8)
∧¬(a < 5)

F

T

PC: ¬(a > 8)

PC: ¬(a > 8)
∧(a < 5)

T
PC: ¬(a > 8)

∧¬(a < 5)

F

F

6/17



Input Interfaces in the IoT

WSN Sensor

CoAP
MQTT-SN

…

Today! RIOT Summit 2022

7/17



Input Interfaces in the IoT

WSN Sensor

CoAP
MQTT-SN

…

Today! RIOT Summit 2022

7/17



Challenge: State Space Explosion

MQTT-SN: Stateful protocol for data exchange in the IoT
▶ Certain code can only be tested by establishing a state first
▶ For example, subscribing to a specific topic
▶ Results in a large state space for symbolic execution

⇒ Cannot be fully explored using symbolic execution

8/17



Message Format Specification

Goal: Discovering “interesting” execution paths first
⇒ Observation: Many inputs are rejected early on

Approach: Partially specify protocol message format
▶ Embedded domain specific language (EDSL)
▶ Based on the Scheme programming language

(define-input-format (suback id)
(make-uint 'len 8 8)
(make-uint 'type 8 MQTT-SUBACK)
(make-symbolic 'flags 8)
(make-symbolic 'topicid 16)
(make-uint 'msgid 16 id)
(make-symbolic 'code 8

`((And
(Uge ,code 0)
(Ule ,code 3)))))

Figure: Message format for MQTT-SN SUBACK.

9/17



State Machine Specification

Challenge: MQTT-SN is a stateful protocol
⇒ Message format depends on protocol state

Approach: Also describe protocol state machine
▶ With a separate Scheme-based EDSL
▶ Advance protocol state based on received messages
▶ Return new symbolic message depending on state

Software SymEx Engine State Spec.

Concrete packet
Forward packet

Triggers
State

TransitionMessage Format
Symbolic Packet

Figure: Overview of message format exchange.

10/17



Specification of the MQTT-SN State Machine

Needed: MQTT-SN state machine description
▶ Described as a finite-state machine
▶ Transitions based on input packet
▶ Each transitions returns a response format

Figure: Excerpt of the MQTT-SN state specification.

11/17



Symbolic Packet Sequences

Problem: Need to reason about sequence of packets
⇒ Further increase of state space

1st packet 2nd packet … kth packet

12/17



Multipacket Exploration

Simplified Algorithm:
1. Explore program up to a sequence length of k
2. Restart execution when packet k was processed
3. When coverage is stagnant: Increment k

PC: T
k = 1

PC: …
k = 1

PC: …
k = 2

… …

PC: …
k = 1

… …

PC: …
k = 2

PC: …
k = 3

… …

PC: …
k = 2

… …

1st packet processed

1st packet processed

2nd packet processed

⇒ Partially explored paths are re-executed continuously

13/17



Evaluation (1/2)

Research Question: Does our symbolic execution approach improve coverage?
⇒ Experiments with RIOT’s MQTT-SN implementations

14/17



Evaluation (2/2)

Research Question: Is the approach applicable to other protocols?
⇒ Experiments with RIOT’s and Zephyr’s DHCP implementations

15/17



Bugs found in RIOT

Bugs Found:
1. #18307: out-of-bounds read in dhcpv6 module
2. #18289: missing mutex_unlock in asymcute
3. #18434: null pointer dereference in asymcute

Future Work:
▶ Integrate protocol rules into specification?
▶ Assessment of created protocol specifications
▶ …

16/17

https://github.com/RIOT-OS/RIOT/issues/18307
https://github.com/RIOT-OS/RIOT/issues/18289
https://github.com/RIOT-OS/RIOT/issues/18434


Summary

Key Insight: High coverage in complex network modules via symbolic execution
⇒ With comparatively little manual effort

Contributions:
1. Input specification language for message formats1

2. Specification language for protocol state machines2

3. Enhanced version of SymEx-VP with new exploration engine3

More Information: Sören Tempel, Vladimir Herdt, and Rolf Drechsler. Specification-based Symbolic
Execution for Stateful Network Protocol Implementations in the IoT. IEEE Internet of Things Journal, 2023.

1https://github.com/agra-uni-bremen/sisl
2https://github.com/agra-uni-bremen/sps
3https://github.com/agra-uni-bremen/sps-vp

17/17

https://github.com/agra-uni-bremen/sisl
https://github.com/agra-uni-bremen/sps
https://github.com/agra-uni-bremen/sps-vp

