

Automating my home using KNX

Hallo!

I am Bas Stottelaar

@BasilFX, Arnhe(i)m, MSc, Allego, EFM32

Requirements

- Should be wired
- Must meet the WAF
- Safe and stable
- Understandable

About KNX

A bit of history

- Open standard (ISO/IEC 14543)
 - ~400 manufacturers
- European Installation Bus (EIB)
- Around since 1990
- Twisted pair, RF or IP
- Decentral

KNX Protocol

Characteristics

- Communication at 9600bps
- Telegram length
 - Standard: 23 bytes
 - Extended: 263 bytes

Anatomy

- Communication objects
- Memory
- Properties

oxFFFF

OTA (OTW)

. . .

Settings

Communication objects

Address table

Associations

Status

Properties:

- Programming mode
- Serial number
- Run status
- Mask version
- Version
- Address offsets

...

0X0000

15

System models

- BCU1
- BCU2
- System 7
- System B

Up to 255 communication objects and 65KiB of memory.

Addressing (1)

- Every device has a physical address:
 - Example: 3.3.1
- Communication objects communicate using group address:
 - Example: 5/1/2 (3-level), 32/1 (2-level)

Addressing (2)

- If I toggle a switch, the switch will send an update of the communication object that represents the switch's state.
- It will transmit a telegram that is group-address.
- Interested parties (e.g. light bulb) will respond to that by updating its state (turn light on).

KNX is OSI-based

Application L7

Presentation L6

> Session L5

Transport L4

Network L3

Link

Physical L1

Transceiver

Implementation

I'm not the first

- KARDUINO
- KONNEKTING
- SelfBus
- Wildfire KNX Stack

Features

- Not bound to specific hardware
- 'Complete'
- Emulation of System 7
- LGPL

Warning

- I never used GNRC before
- I never implemented a network stack before

Architecture

Design choices

- Device drivers without netdev
- KNX library not coupled to GNRC

A feature branch is available

https://github.com/basilfx/RIOT/tree/feature/knx

Check out examples/gnrc_knx_device. Note that this branch can be unstable, and will be forced-pushed to.

Getting started

- MCU with 8E1 UART support (Kinetis or EFM32)
- Transceiver (or a BCU like the SIEMENS 5WG1117-2AB12)
- Basic KNX stuff: router, PSU, actors

My custom board

Specs

- Silicon Labs EFM32PG12B
 - 40MHz Cortex M4
 - 1MiB Flash
 - 256 KiB RAM
- OnSemi NCN5120/NCN5121
- I2C and GPIO

BOM

- ~20 Euro for components
- ~3 Euro for PCB
- ~1 Euro for 3D printed case (externally)

Whats next?

What Works

- The hardware
- Two device drivers
- L3/L4/L7
- 200+ (unit) tests
- Programming via ETS5

TODO

- Thorough review of code
- Contribute to RIOT
- Finish examples
- OTA (or actually, OTW)
- And soldering 20 more boards before next week...

Future

- Separation of L7 and device emulation code
- Memory optimization

Thanks!

Any questions?