
Kconfig for RIOT
Configuration Task Force

RIOT Summit 2020 - Breakout sessions

A short recap
What we aim for

Start Phase 1
Model configurations

Phase 2
Model dependencies

Phase 3
Scripts and switch

Current state

Kconfig migration
● Phase 1

○ Identification and documentation of compile-time configuration parameters

○ Modelling of those parameters as Kconfig symbols

■ Configuration via Kconfig is optional and can be activated

■ Tracking of modules can be found in issue #12888

○ ~60 drivers, networking modules and packages

○ Ongoing work on boards and CPUs

■ Clock configuration for nucleo-based boards

■ Clock and WiFi configuration for ESP

This phase is still in progress. Contributions are welcome!

https://github.com/RIOT-OS/RIOT/issue/12888

After completion
of Phase 1

Start Phase 1
Model configurations

Phase 2
Model dependencies

Phase 3
Scripts and switch

Kconfig migration
● Phase 2

○ First milestone: done! 🎉

■ Model features as Kconfig symbols

■ Model CPUs (model, line, family, arch) and boards as Kconfig symbols

■ A test has been added to keep sync with Makefile

○ Second milestone:

■ Model modules as Kconfig symbols

■ Add default configurations (.config files) for boards, CPUs and

applications

■ Test to check binaries resulting binaries

Start Phase 1
Model configurations

Phase 2
Model dependencies

Phase 3
Scripts and switch

After completion
of Phase 2

Kconfig migration
● Phase 3

○ Make targets (e.g. the ones used CI and testing)

■ boards-supported

■ features-missing

■ ...

○ Switch to Kconfig as default

Start Phase 1
Model configurations

Phase 2
Model dependencies

Phase 3
Scripts and switch

After completion
of Phase 3

Some advanced
features

Incremental compilation
● PR #14654 introduced incremental compilation when configuration parameters are

modified via Kconfig.

● Allows to reduce build time when iterating over different configurations.

● Same approach as Linux, using the fixdep.c script

○ Configuration macros are searched in the .c file

○ .d files are modified so the object file depends on a dummy header file

○ Kconfig generates one dummy file per configuration parameter. The file is touched

when the configuration changes.

https://github.com/RIOT-OS/RIOT/pull/14654

Parameterized tests
● In issue #14669 it was suggested to build applications in the CI using different

environments.

● Could be done by providing multiple .config files to:

○ Apply different groups of configurations

○ Enable/Disable modules

● Leveraging incremental compilation, object files can be shared between every build.

● Potentially some test application could be merged => reducing CI build time

https://github.com/RIOT-OS/RIOT/issues/14669

Features provided by modules and packages
● Features are being modelled as Kconfig symbols, just as modules.

● In Kconfig features are provided and checked at the same moment modules are selected.

● Make it easier to model dependencies and conditions in the build system.

Advanced configurations
● By using ranges and choices, there is fine control over the possible values the user can

assign to a configuration parameter:

○ Multiplier and divider parameters during clock configurations

● By evaluating the features provided by the hardware and other modules the defaults

can be adapted as the user changes configurations:

○ When hardware acceleration is available for cryptographic operations, use that

peripheral.

○ If a driver which provides hardware acceleration is selected, use that

implementation over software one.

Modelling in Kconfig

Features
● Boolean non-visible symbols.

● Selected by providers:

○ CPU_MODEL, CPU_ARCH, etc.

○ Boards

○ Modules and packages

● Selection may be conditional

config HAS_PERIPH_UART_MODECFG

 bool

 help

 Indicates that the UART peripheral allows mode configuration.

config CPU_COMMON_SAM0

 bool

 # [...]

 select HAS_PERIPH_UART_MODECFG

Modules and Packages
● Boolean symbols, most times visible (i.e. have a prompt).

● May or may not have dependencies on:

○ Hardware (e.g. CPU_MODEL, CPU_FAM)

○ Hardware features (e.g. HAS_PERIPH_HWRNG)

○ Other modules or conditions

● Defaults may apply conditionally

config MODULE_PERIPH_ADC

 bool "ADC peripheral driver"

 depends on HAS_PERIPH_ADC

 select MODULE_PERIPH_COMMON

config MODULE_PERIPH_INIT_ADC

 bool "Auto initialize ADC peripheral"

 default y

 depends on MODULE_PERIPH_INIT

 depends on MODULE_PERIPH_ADC

Configuration parameters
● Most of times associated to a module, CPU, board or package

● Could also be provided by the application

● Multiple types: bool, int, string, hex

● Multiple defaults using conditionals

● Adding conditions to the prompts configurability can be controlled

● Adding dependencies configurability and generation of the values can be controlled

config CLOCK_PLL_M
 int "M: Division factor 'M' for the main PLL input clock" if USE_CLOCK_PLL
 default 6 if !BOARD_HAS_HSE
 default 5
 range 1 8
config CLOCK_PLL_N
 int "Main PLL multiplication factor 'N' for VCO" if USE_CLOCK_PLL
 default 20
 range 8 86

APIs with multiple implementations
● Frontend / Backend.

● Choices with multiple options:

○ Defaults can depend on features or other symbols.

○ Choices can be extended from other files.

○ Configuration parameters:

■ That apply to all implementations.

■ That are available only for one implementation.

● One symbol for the API module, and one symbol for the implementer.

APIs with multiple implementations
menuconfig CRYPTO_AES
 bool "AES"
 select MOD_CRYPTO

choice CRYPTO_AES_IMPLEMENTATION
 bool "AES implementation"
 depends on CRYPTO_AES
 default MOD_PERIPH_CRYPTO_AES

config MOD_PERIPH_CRYPTO_AES
 bool "Hardware accelerated"
 depends on HAS_PERIPH_CRYPTO_AES

config MOD_CRYPTO_AES
 bool "Software"

endchoice

config PKG_CRYPTOAUTHLIB
 bool "Cryptoauth Library"

choice CRYPTO_AES_IMPLEMENTATION

menuconfig CRYPTOAUHLIB_AES
 bool "Cryptoauth Library"
 depends on PKG_CRYPTOAUTHLIB

configurations for this implementation
config CRYPTOAUHLIB_AES_BUFFER
 bool "Some buffer"
 depends on CRYPTOAUHLIB_AES

endchoice

Peripheral driver configurations
● Peripheral driver symbols, feature symbols and generic configurations are shared.

● Some platforms present extra configurations.

● By using a convention we can display the configurations in the correct place

menuconfig KCONFIG_USEMODULE_PERIPH_TIMER
 bool "Configure timer peripheral driver"
 depends on USEMODULE_PERIPH_TIMER
 help
 Configure Timer peripheral using Kconfig.

Include CPU specific configurations
if KCONFIG_USEMODULE_PERIPH_TIMER
osource "$(RIOTCPU)/$(CPU)/periph/Kconfig.timer"
endif

cpu/efm32/periph/Kconfig.timer
config EFM32_XTIMER_USE_LETIMER
 bool "Xtimer uses letimer"
 depends on CPU_COMMON_EFM32
 Depends on USEMODULE_XTIMER
 help
 Xtimer will use EFM32 Low Energy Timer as
 its low level timer.

Features conflicting
● Currently express that two features can’t be used at the same time

○ Used to express mutual exclusion between two peripheral drivers

● In Kconfig mutual exclusion is modelled using choices

○ We need to know the choices and options beforehand

○ Depend on the platform (board, CPU, etc.)

● The conflicting condition can be defined by setting an ERROR symbol

○ The ERROR symbol could be a string which is set when a given condition is true

config ERROR_CONFLICT
 string

config ERROR_CONFLICT
 default "Can't select RTT and RTC drivers at the same time"
 depends on CPU_COMMON_SAM0
 depends on MODULE_PERIPH_RTT && MODULE_PERIPH_RTC

