
Break-out session on future of network stack lower layers -- RIOT Summit 2020
===================

Synopsis: focus on MAC / PHY rework, including security aspects (if time: security also
beyond lower layers)
Moderator: José. Location: Room B in Gather.town

see slides from José: https://github.com/jia200x/docs/blob/master/bs_ll.pdf

Status:
 RDM: The 802.15.4 Radio HAL #13943
 https://github.com/RIOT-OS/RIOT/pull/13943

 ieee802154_submac: add initial support for common MAC sub layer
 https://github.com/RIOT-OS/RIOT/pull/14950

Discussion:
 * function pointer vs. switch case:
 -> Security concerns about function pointers
 -> Focus on the API instead of optimizations
 * Hannes suggest to compare network device driver APIs among different network stack
implementations and try to harmonize
 -> The Radio HAL design was revised against the following Radio APIs:
 - OpenWSN
 - OpenThread
 - Linux (ieee802154_ops)
 - Contiki (radio_driver)
 - Mbed (device_driver_s)
 - Zephyr-OS
 -> Should we follow this discussion on Github? Mailing list?
 * Status of other Link Layers:
 -> BLE probably doesn't require such a rework because most internal stuff are
handled by the stack (Nimble)
 * IEEE 802.15.4 MAC
 -> Options: implement custom IEEE 802.15.4 MAC (with L2 security, indirect
transmission, etc).
 -> There seems to be consensus about focusing on existing implementations of IEEE
802.15.4 (OpenWSN, OpenThread)
 * How to send L2 data?
 -> It might be interesting to have a mechanism to abstract sending L2 data.
 -> E.g it's not nice to build an ethernet or IEEE 802.15.4 frame each time
sometimes wants to send
 * Unify network stack integration code (IRQ handling, init code)
 -> The OS shouldn't hardcode the desired mechanism for handling IRQ (e.g
`event_t`, `msg_t`)
 -> However, these mechanisms could be unified and reused by different network
stacks
 -> E.g processing IRQ could be implemented once (one for `msg_t`, one for
`event_t`, process from ISR) and then configure the network stack to use one mechanism
 * GNRC: Use only one stack for all network interfaces?
 -> Rough consensus for NO. GNRC was designed for being flexible. Probably memory
consumption is not the focus here.
 * Frame-buffers and zero-copy
 -> We ran out of time. Will open an issue and/or post something in the mailing
list.

