
Securing IoT Communication:
The Path from SSL to DTLS &

Compact TLS
Hannes Tschofenig

hannes.tschofenig@arm.com

<Technology X> was never designed with
<Feature Y> in mind

Design of SSL

• SSL 2.0 released early 1995. SSL 3.0
released in ‘96. SSL 1.0 never released.

• Acorn Computers made their ARMv3
RISC computer available at that time.

• Most users access the Internet using a
slow, dial-up modem.

• Nokia 8110 launched in ‘96.

• SSL provided communication security and
used asymmetric crypto for authentication
to secure web-based communication.

BeBox used two PowerPC 603 processors running at 66 or 133 MHz

Pictures from https://www.computerhistory.org/timeline/1995/

Timeline of IETF TLS/DTLS Specifications

TLS 1.0

TLS 1.1
DTLS 1.0

TLS 1.2

DTLS 1.2

TLS 1.3

‘99 ‘06 ‘08 ‘12 ‘18

Timeline of IoT-relevant Extensions

TLS 1.0

TLS 1.1
DTLS 1.0

TLS 1.2

DTLS 1.2

TLS 1.3

‘99 ‘06 ‘08 ‘12 ‘18

TLS PSK
(RFC 4279) False Start

(RFC 7918)
Cached Info
(RFC 7924)RPK

(RFC 7250)
RSL

(RFC 8449)

MFL
Client Certificate URLs
Trusted CA Indication

(RFC 6066)

Ticket
(RFC 4507)

TLS became a
target of attacks

• TLS 1.0, 1.1, and 1.2 fixed security
problems and added new
cryptographic algorithms 
Foundation unchanged.

• With the success of TLS, the
interest in attacking it increased.

• With RFC 7925 and RFC 7525 we
have TLS & DTLS profiles that
exclude problematic algorithms
and configuration.

Why TLS 1.3?

Value-add:
1. Performance improvement, and
2. better privacy protection

(see BCP 188 ‘Pervasive Monitoring Is an Attack’)

Comparing TLS/DTLS 1.2 vs 1.3
Roundtrips

Features

Message sizes

Code Size

Cryptographic operations

Energy

Memory

Thanks to my collaborators Emmanuel Baccelli and Gabriele Restuccia for their help with this investigation.

Performance

TLS 1.2
Full
Handshake

Optional messages
indicated via (*).
Finished and
application data msgs
are encrypted.

TLS 1.3 Public
Key based
Authentication

Legend: *: optional message, []: Not a
handshake message, {}: Encrypted message

TLS 1.3 0-RTT

Legend:
*: optional message
(), {}, and [] indicates messages protected using
different keys

What should be
optimized for?

• Latency

• Code size

• RAM utilization

• CPU Performance

• Power consumption

• Over-the-wire bandwidth

• Cost

Unfortunately, there are tradeoffs.

Examples:

• Optimizing crypto for CPU speed
typically increases RAM utilization
and code size.

• Adding a new compression
algorithm adds code size, might
require more RAM, requires more
CPU cycles and adds development
cost but reduces the over-the-wire
overhead.

Flash Size in Mbed TLS: TLS 1.3, ECDSA-ECDHE (P2561), AES-128-CCM

RAM Utilization
baremetal lowers the RAM requirements to less than 10 Kb for
DTLS with ECDHE-ECDSA with AES-128-CCM using TinyCrypt,
combined with a more efficient management of send and receive
buffers, as well as an improved handling of certificates and of the
DTLS retransmission buffers.

Almost exclusively used by AES implementation.

Energy Measurements
(Values in Millicoulomb)

The DTLS 1.2 implementation allows multiple DTLS records to be packed
into a single datagram thereby reducing the required bandwidth, which
leads to lower energy consumption.

Bandwidth

• The biggest contribution to the
handshake size is coming from
certificates.

• Contributors to the size include:
• Long Subject Alternative Name

field.
• Long Public Key and Signature

fields.
• Can contain multiple object

identifiers (OID) that indicate the
permitted uses of the certificate

• Many intermediate certificates

• Lots of solutions available:
• Sensible configuration and

deployment options.
• ECC instead of RSA certs
• Client Certificates URLs
• Caching Certificates
• Compressing Certificates
• Suppressing Intermediate

Certificates
• Raw Public Keys
• New Certificate Types (e.g. CBOR

Web Token, Weave digital
certificates)

Privacy Protection

Privacy Protection

TLS 1.3

TLS 1.2

+PFS, -key transport, +padding, +various unlinkability properties

Eavesdropping and intercepting TLS
handshakes became much more difficult.
Claimed to cause problems for enterprise
network management.
Resulted in delayed publication of the TLS
spec and polarized IETF engineering
community.
Additional extensions are being developed
that even encrypt the Server Name
Indication (SNI).

Not everyone is happy…

Article reference: https://www.theregister.co.uk/2018/03/23/tls_1_3_approved_ietf/

TLS was primarily used for
protecting protocols running

on top of TCP, like HTTP ...

but what about IoT
protocols?

Eclipse IoT Developer Survey 2019

Figure copied from https://iot.eclipse.org/community/resources/iot-surveys/

Note: The survey may be biased due to the size of the poll and the way it is advertised.

The IoT standards community is split when it comes
to protocols

CoAP vs. MQTT vs. HTTP

Trend: Protocol developments have
made all three very similar

All three use TLS/DTLS for
communication security

According to [HomeGateway], the mean NAT
binding timeouts is 386 minutes for TCP and
160 seconds for UDP.

Shorter timeout values more keepalive
messages

IoT devices that sleep a lot, handshake needs
to be repeated.

CoAP was initially
designed to run
over UDP and
DTLS was used to
secure it.

[HomeGateway] Haetoenen, S., et al., "An experimental study of home gateway characteristics",
Proceedings of the 10th ACM SIGCOMM conference on Internet measurement, November 2010.

How can we skip the handshake?
Connection ID (CID)
• If possible, handshakes should be avoided.
• CID is a new field in the record layer that allows untangling the

security context lookup from the 5 tuple.
• Handshake extension to negotiate feature, i.e., optional to use.
• Specification available for DTLS 1.2 and DTLS 1.3.

• DTLS 1.2 is close to publication as an RFC.
• The DTLS 1.3 CID solution offers better unlinkability capabilities.

• Performance improvements are significant
(for a certain class of IoT devices).

From Standards to Implementations

Code Feature Mbed TLS Tiny DTLSWolfSSL Matrix SSLCycloneSSLaxTLS BearSSL
TLS 1.2
TLS 1.3
DTLS 1.2
DTLS 1.3
TLS 1.2 PSK
TLS 1.2 RPK
TLS 1.2 Cert
OCSP stapling
TLS/DTLS 1.2 ATLS
DTLS 1.2 CID
TLS 1.2 Ticket
MFL
RSL
TLS Cached Info
Client Cert URLs
Trusted CA Ind.
False Start

• Support for TLS 1.3
is already pretty
good.

• Certs and PSKs are
well supported.

• Many of the IoT
performance
improving
extensions are not
implemented.

• Note: Server-side
support for an
extension is required
as well.

Table shows implementations that are officially released; not prototyping code.

More Standards
in the search for more “lightweightness”

LAKE and cTLS

Compact TLS (cTLS)

A compression of the TLS/DTLS
handshake (+ record layer):
• Change encoding of integers
• Omit fields that are used only for

backwards compatibility.
• Define profiles of configuration

settings
(i.e. ciphersuite concept extended
to extensions and other
parameters)

• New certificate compression
scheme

Security properties of TLS
unchanged. Work in progress IETF draft: draft-ietf-tls-ctls

Outlook

Henning Schulzrinne, “Networking Research - A Reflection in the Middle Years”,
URL: https://arxiv.org/abs/1809.00623

