Functional Encryption & Homomorphic Encryption for RIOT

Experiences with Benchmarking Advanced Cryptography in RIOT

Max Pengrin max.pengrin@hft-stuttgart.de HFT Stuttgart, Germany

RIOT Summit 2020

Riot Summit 2020 - Max Pengrin, HFT Stuttgart - 1

Bio

- Max Pengrin
- B. Sc. Computer Science
- Prospective M. Sc. IT-Security
- Academic Associate at HFT Stuttgart, SensAR

Sensory data and augmented reality, a research project at HFT Stuttgart sponsored by the Carl-Zeiss-Foundation

(https://www.hft-

stuttgart.com/research/projects/current/sensar)

Overview of this Talk

- Objectives of our Work
- Introduction to selected Crypto Schemes and their Applicability to IoT-Scenarios
- Such special Crypto Schemes in RIOT
- Benchmarking Challenges and initial results
- Lessons Learned
- Outlook & Future Work

Advances in the Crypto-Community

- Many specific crypto schemes have been developed beyond traditional symmetric/asymmetric crypto (AES, RSA)
 - E.g. Secure multiparty computation, proxy re-encryption, functional encryption, homomorphic encryption, quantum-proof encryption, ...
 - Each of these offer useful properties/features for many IoT scenarios
 - Mostly theoretic work by the formal crypto community, but some prototype implementations exist

→ There is still a lack of systematic exploration and a thorough evaluation of the actual scalability and performance of these approaches, in particular on restricted IoT-nodes

Objectives

- Our goals ...
 - Closing the gap between the theoretical cryptography community (i.e. mathematical proofs) and the network security community (i.e. applied cryptography in actual real-world systems)
 - Working out ready-to-use applied cryptography solutions that make special crypto usable in RIOT and providing performance estimations to the IoT community
- Current Work and Focus
 - Functional and Homomorphic encryption
 - Enabling comparable benchmarking for various such schemes under RIOT

Functional Encryption

Identity-based Encryption (IBE)

- Allows anyone to generate a public key for some entity based on an ASCII string
 - No need to retrieve public keys / certificates for encryption
 - Receiving entity receives corresponding private key for decryption from special trusted third party
- IoT nodes can encrypt different data for various receivers without the need to retrieve / store multiple public keys

Attribute-based Encryption (ABE)

- Allows to encrypt data with a policy attached
 - Example policy: (level = manager OR department = C)
- Only entities whose private key matches the policy can decrypt the data
- > Very useful for IoT as a means for enabling Data-Centric Security (Content Object Security)
 - Access policy is included in the data itself
 - Access policy can be specified at data production time in an abstract way without knowing the exact identities of consumers

IoT Example: Attribute-based Encryption (ABE)

Homomorphic Encryption

- Applying some mathematical function on encrypted data
- Crypto community is working hard on enabling fully-homomorphic encryption (FHE)
 - I.e. using any mathematical function
 - Not realistic for IoT devices anytime soon from a performance perspective ...
- But: partially homomorphic encryption may be feasible on IoT nodes

 - E.g., homomorphic addition e(x) + e(y) = e(x + y)• E.g., homomorphic multiplication $e(x) \times e(y) = e(x \times y)$

with encryption function e(x)

- Example IoT Use Case
 - Sensor node A can forward encrypted data to next sensor node B, which can add its encrypted data without reading sensor A's value; sink node can decrypt the sum (and calculate the average)
 - Zero-Knowledge Computation out-sourcing of computational task, etc. more use cases imaginable

Integrating Functional and Homomorphic Encryption in RIOT?

- Several open source libraries exist, but:
 - Some outdated / not maintained
 - E.g. last commit over 2 years old
 - Some not suitable for RIOT
 - E.g. using non-supported programming language
 - E.g. using dynamic memory allocation
- What had been done?
 - Relic toolkit
 - Palisade (FHE, ABE, C++)
 - Paring-based Library Stanford (just one example w\ IBE)
 - SEAL Microsoft (>2GB RAM)
 - TFHE: Fast Fully Homomorphic Encryption (requires x86_64)
 - Many more in development (ibm, google, helib)
- What to do?

Integrating Functional and Homomorphic Encryption in RIOT

- What's *done* in **RIOT**?
 - Relic toolkit
 - Developed with embedded in mind

- Supports many interesting special crypto schemes that have not been investigated in depth in RIOT
 - "Cryptographic protocols (RSA, Rabin, ECDSA, ECMQV, ECSS (Schnorr), ECIES, Sakai-Ohgishi-Kasahara ID-based authenticated key agreement, Boneh-Lynn-Schacham and Boneh-Boyen short signatures, Paillier and Benaloh homomorphic encryption systems)"
- RELIC already used/integrated in RIOT Available as a plugin

Repository and Image: https://github.com/relic-toolkit/relic

Some Initial Results

label	algorithm	type	runtime	std-dev
cp_rsa_enc	RSA Encryption	traditional	526	46,56
cp_rsa_dec	RSA Decryption	traditional	1625	281,62
cp_phpe_enc	Paillier Encryption	homomorphic	4772	700,81
cp_phpe_dec	Paillier Decryption	homomorphic	2410	312,09
cp_ecdh_key	Ellyptic-Curve Diffie-Hellman Key Derivation	traditional	6217	1187,12
cp_ibe_enc	Boneh-Franklin IBE Encryption	functional	55592	2871,34
cp_ibe_dec	Boneh-Franklin IBE Decryption	functional	27184	1446,86
cp_bgn_enc1	Boneh-Goh-Nissim Encryption	homomorphic	6988	1137,37
cp_bgn_dec1	Boneh-Goh-Nissim Decryption	homomorphic	7008	764,36
cp_bgn_mul	Boneh-Goh-Nissim Homomorphic Multiplication	homomorphic	115179	8645,88
cp_bgn_add	Boneh-Goh-Nissim Homomorphic Addition	homomorphic	608	62,35

Runtime of various crypto schemes under RIOT (RIOT-native on i7 CPU, results in μs)

Benchmarking Challenges

- Relic build-in benchmarks not supported in RIOT
 - partly hardcoded parameters
 - Me = Noob no development background
- Ongoing work on harmonizing keylengths etc. to enable comparable benchmarking of different algorithms
 - two types of keys at the same time elliptic curve- & prime-based
 - Key length != Key length; Securitybits?
- Repository: https://github.com/maksim-ka/RIOT_Projects

Lessons Learned

- Memory is crucial, also Power usage (but not necessarily in our usecases), Architecture, Library jungle, Buildsystems are hard ...etc. pp.
- RIOT-OS is nice, because...
 - Process managing
 - Drivers
 - Plugins
- More mainstream like/newbie-friendly access would be appreciated
 - Vscode extension (out of the box debugging)
 - Arduino-Code/Libs, PlatformIO support
- Thanks to the friendly 🔄 RIOT community for help in getting started
 - Special thanks to Peter Kietzmann for lots of initial assistance!

Outlook and Future Work

Ongoing Work

- Harmonizing benchmarking among various crypto schemes
- Running large-scale experiments on FIT-IoT-Lab

Future Work

- Have students run experiments on IoT hardware
 - at HFT Stuttgart security lab
- Integrate more advanced crypto into RIOT
 - Find suitable crypto-libs / open-source implementations
 - With interesting crypto-schemes (e.g. quantumproof-crypto)

