Savoir-faire

LINUX

Towards fast-booting & MCU-driven operations
for hybrid multi-core chips
with dual Cortex-A7 and Cortex-M4

R

3.

Summit

September 14 - 15, 2020 Gilles DOFFE

gilles.doffe@savoirfairelinux.com

STM32MP1 use case

Overview of STM32MP1
STM32MP157c-dk2 board description

Specificities

Boot modes

STM32MP1 Family

Arm®Dual Cortex®-A7 Arm®Cortex®-M4
up to 800 MHz 209 MHz

L1 32kB | L1 32kB D

FPU MPU
256kB L2 Cache

» Let’s callit MP1 For convenience
» Use case of the STM32MP157CAC:

_ _ DDR3/DDR3L/LPDDR2/LPDDR3 32-bit @ 533 MHz
3x SDMMC Dual Quad-SPI 16-bit SLC NAND 8-bit ECC

- MP : Dual Cortex®-A7 cores running at 650 MHz
. - MCU System RAM MCU Retention RAM
- MC : Cortex®-M4 core running at 209 MHz 2BAB BAKB
- MPU/FPU System RAM 256kB Back up RAM 4kB OTP fuse 3kb
- GPU |
i . 3D GPU OpenGL ES 2.0 5x LDOs
-+ Several resources available: @ 533 MH;z e e ey
ST 10/100M or Gigabit MIPI-DSI controller Oscillators
imers Ethernet GMAG LCD-TFT controller MDMA + 2x DMA
- GPIOs 3x USB 2.0 Host/0TG Reset and Clock
with 2x HS PHY 3x watchdogs
. interf
12C/SPI/UART Sl Up to 176 GPIOs
- ADC/DAC HOMI-GEC TrustZone
SMA ;’Eg‘"“l FD AES 256, TDES*
- S slave . |
DFSDM SHA-250, MD_5’ HM_AC 2x 16-bit advanced
- RTC (8 channels/6 filters) 3x Tamper Pins with motor control timers

- Source and informations:

- https://www.st.com/en/microcontrollers-microprocessors/stm32mp157c.html

6x SPI / 3x I2S
6x 12C
4x UART + 4x USART
4x SAl
SPDIF

1 active
Secure Boot*

Secure RAMs
Secure Peripherals

Secure RTC
Analog true RNG
96-bit unique ID

*available for STM32MP157C and STM32MP157F only

15x 16-bit timers
2x 32-bit timers

2x 16-bit ADCs

2x 12-bit DACs

https://www.st.com/en/microcontrollers-microprocessors/stm32mp157c.html

STM32MP157c-dk2 board

» Features STM32MP1

+ STM32MP157CAC with :

- 4 Gb DDR3 clocked a 533MHz
- Ethernet Gigabit interface
- USB
- 4 user LEDs
- HDMI connector and Jack
- Wi-Fi/Bluetooth
- 4" TFT 480x800
- Source and informations :

- https://www.st.com/en/evaluation-tools/stm32mp157c-dk2.html

https://www.st.com/en/evaluation-tools/stm32mp157c-dk2.html

Cortex-Af

o

(master)

Coprocessor management

Cortex-M4

(CO-processor)

Interrupts
EC

GIC

MNVIC

Watchdog
Aney

WDGE

| [DMA
L f'.-'IA"I i L) I"-.-"anE

MDA,

21 AN

(266KB)

DDR

BKPSRAM
(4KB)

Timers
TIM (x2)

TIM [I 1 2}

LPTIN 5)

ey /ate W B BN W NFaW_ B —_—

v —— . — —

1Os

— . ——_———

(=i HEE

Security

RNGZ

C1

CRC

RMNGT

TAMP

CRYP1

Visual

DSl

CRYF2

Power and
thermal

Trace and
debug

S T r'.'ll

Persistent
storage

QUALSH

SDMMC1/2 (%)

Mass storage

Low speed interfaces
USART (%3

High speed
interfaces
SDMMES (%)

O

(*): some peripherals are multi-functions and
may be mapped differently by the customer

(USB OTG)

USBPHYC

Networking

» Source: https://wi

Analog
Audio

Ki.st.com/stm32mpu/wiki/STM32MP15 peripherals_overview

https://wiki.st.com/stm32mpu/wiki/STM32MP15_peripherals_overview

» Shared ressources
- Can be protected using Hardware Semaphores (HSEM)

» No Flash, only SRAM

» MC (Cortex-M4) can be configured

- by MP (Cortex-A7)
- By bootloader (U-boot)
- By Mainline Linux kernel (RCC, regulators and clocks mainly) and by itself
- By OpenST Linux kernel (Fully using Ressource Manager)
- https://wiki.st.com/stm32mpu/index.php/Resource_manager _for_coprocessing#Principles

- Fully by itself in a particular case

https://wiki.st.com/stm32mpu/index.php/Resource_manager_for_coprocessing#Principles

» 8 boot mod

es are available on STM32MP1 family :

BOOTZ | BOOT1 |BOOTO| Initial boot mode Comments
Wait incoming connection on:
0 0 0 UART and USB'"! ~ USART2/3/6 and UART4/5/7/8 on default pins
~ USB High-Speed device on OTG_HS_DP/DM pins'®!
0 0 1 Seral NOR-Flash'?! | Serial NOR-Flash on QUADSPIS)
0 1 0 |eMmc™E) eMMC ™ on SDMMC2 (default)! =6
0 1 1 NAND-Flash!3) SLC NAMD-Flash on FMC
1 0 0 |Reserved Used to get debug access without boot from Flash'®!
1 0 { |sD-Card'¥ SD-Card on SDMMC1 (default)!®))
Wait incoming connection on:
1 1 0 UART and USB!"M3) | - USART2/3/6 and UART4/5/7/8 on default pins
- USB High-speed device on OTG_HS_DP/DM pins'?)
1 1 1 Serial NAND-Flash'®! | Serial NAND-Flash on QUADSP|)
Source:

Getting started with STM32MP151, STM32MP153 and STM32MP157 line

hardware development

» STM32MP157C-DK2 board forces BOOT1to 0
by hardware

» It does not have NOR nor QSPI memory

BOOT 2 BOOT 1 BOOTO0
UART/USB 0 0 0
NOR/QSP} o 0 3
Reserved 1 0 0
SD-Card 1 0 1

https://www.st.com/resource/en/application_note/dm00389996-getting-started-with-stm32mp151-stm32mp153-and-stm32mp157-line-hardware-development-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00389996-getting-started-with-stm32mp151-stm32mp153-and-stm32mp157-line-hardware-development-stmicroelectronics.pdf

MP is booted first

The MC is powered up by the MP

Source clocks are configured by the FSBL
Two boot types are available :

Secure boot (not covered by this presentation)
FSBL is TF-A (Trusted Firmware-A)

Basic mode
FSBL is U-Boot SPL (Secondary Program Loader)

xternal RAM
(=512MBytes) Linux user

| S F,'I dC e

Linux kernel

Second Stage

SUNTONTNTR

Boot Loader
(55BL)

e e e e e e e e
| Embedded RAM !
| (=256KB) First Stage [
: Boot Loader K
: (FSBL) :
! I
e e e e e e e i

ROM

(=128kB)

|serspace services and applications launch

Linux kernelinitialisation (platform device drivers,
etc.)
Foot file system (rootfs) mounting

serspace initprocess launch (/sbinfini)

Boot file system (bootfs) loading from mass storage
or Ethernet (TFTP)

serfeedbackwith boot loader splash screen
Linux kernel (ulmage) launch with its device tree
blob (*.dth)

Complete clocktree initialization

External RAM (DDR, LpDDR) controller initialization
=5BL loading fromthe boot device (mass storage
or serial link)

==BL launch

Basicclocktree initialization

FSBL loading fromthe boot device (mass storage
or serial link)

F=SBL launch

~

~

~

~

~

Reserved mode is a debugging mode for the MC (Cortex-M4)

- Also called Engineering mode
Only the MC is started

MP (Cortex-A7) is halted
All clocks have to be setup by The MC itself

It has to be re-flashed after each reboot
+ Due to no flash memory onboard

RIOT OS - Engineering mode

Nearly like others STM32
Nearly...

» STM32MP1 fFamily uses 4 SRAM contigous banks at adress 0x10000000 for a total of 384 KB:

- SRAM1:128 KB
- SRAM2 : 128 KB
- SRAM3:64 KB
- SRAM4 : 64 KB

» ARETRAM of 64 KB :

- available and not erased after standby due to an external power supply
- Starts at address 0x00000000 which is also the default address of the vector table

~

~

~

~

RIOT uses VTOR (VecTOR Remap) register from SCB (System Control Block) to redefine vector table address

But where is the ELF binary loaded as there is no flash memory ?

- Wherever you decide in the RAM!
- Because « ROM » is fake and is a part of SRAM/RETRAM.
 This pseudo « ROM » will be flashed using onboard ST-Link V2 programmer once the target is powered up.

Thus ROM and RAM size can be customized according to your needs.
From cpu/stm32/stm32_mem_lengths.mk :

" {eq (S(STH32. MODEL
ifdef STM32MP1 ENGINEERING MODE
ROM START ADDR 7= @x10005000

else

ifdef STHEEHPI_ENGINEEHING_HDDE
RAM LEN ?= 320K

endif
RAM LEN 7= 384K
endif
endif
endif

ROM START ADDR ?= @x0
endif
ROM LEN 2= 64K

endif
endif

else

'* give the target core clock (HCLK) frequency [inm Hz],

* maximum: 209MHz (rounded) */
#define CLOCK CORECLOCK MHZ()
» Source clocks to setup: /* 8: no external high speed crystal available
* else: actual crystal frequency [in Hz] */

- HSI: High Speed Internal clock pdefine CLOCK HSE | I
- LSI: Low Speed Internal clock /* 8: no external low speed crystal available,

) _ISE: High SDGEd EXternal ClOCk ﬁ.;lE"IJ;'i:_ _I;"-Igfll:-:l-:ll"il .._IEL-:'IE'.:'II ctal aval I-I U l_ll [4 LWavys 32 . T68BkH:

- LSE: Low Speed External clock [* ©: no internal oscillator
* else: actual internal oscillator frequency [in Hz] */

» CSI: Low Power Internal clock #define CLOCK HSI
» Four PLL dedicated to peripherals

» STM32 clocks configuration tool :
usage: cpu/stm32/dist/clk_conf/clk_conf <cpu_model> <coreclock> <hse_freqg> <lse> [pll_i2s_src] [pll_i2s_q_out] [pll_sai_q_out]
S cpu/stm32/dist/clk_conf/clk_conf stm32mp157 208000000 24000000 3276

Only few peripherals are supported at this time:
Timers

UARTS

GPIOs

12C (not tested yet

i 13321 REBRS

. =1l 1 RBOAS2
= 1111 RE1RES
5010 1 REZASY

L X1 T RBIRSS

» Build Linux distro : Ubuntu 20.04

- Install required packages:
- sudo aptinstall build-essential gcc-arm-none-eabi gdb-multiarch

» OpenOCD

- No tag since a long time so use last commit on master at the time of this presentation

- S git clone https://git.code.sf.net/p/openocd/code openocd
- S cd openocd

- S git checkout 393448342 -b mp1_ocd

- S make -jS(nproc) && sudo make install

https://git.code.sf.net/p/openocd/code

» Pull request is still in review at this time, thus use custom repository :
+ S git clone https://github.com/gdoffe/RIOT.git -b mp1_dev

- $cd RIOT
- S make BOARD=stm32mp157c-dk2 -C tests/periph_gpio/ flash

https://github.com/gdoffe/RIOT.git

RIOT OS - Did you say Linux ?

Buildroot
The device tree

remoteproc

» Linux distribution used : buildroot

- Linux kernel version at this time : 5.7
- Excellent tutorials from Bootlin : https://bootlin.com/blog/building-a-linux-system-for-the-stm32mp1-basic-system/

- Simple and efficient:

- S git clone git://git.buildroot.net/buildroot
- $ cd buildroot

- S make stm32mp157c_dk2_defconfig

- S make

» Flash buildroot on sdcard :
- S sudo dd if=output/images/sdcard.img of=/dev/mmcblk0 bs=1M

Rbot

d Linux Easy

https://bootlin.com/blog/building-a-linux-system-for-the-stm32mp1-basic-system/

» The device tree is an universal way to describe hardware for
bootloaders and Operating Systems.

» U-boot and Linux kernel use their own device tree

» Clocks (HSE, LSE, HSI, LSI, PLL, etc...) are configured by the
FSBL :

- NEVER UPDATE SOURCE CLOCKS IN FIRMWARE !

CAUTION
ICY

)
.

WALK LIKE A
PENGUIN

-name stm3zZmpl*
archf/arm/boot/dts/stm32mp15xxab-pinctrl.dtsi
arch/arm/boot/dts/stm32mpl157c-edl.dts
archf/arm/boot/dts/stm32mp157c-dhcom-pdk2.dts
arch/arm/boot/dts/stm32mp157c-dk2.dts
archfarm/boot/dts/stm32mpl157c-evl.dts
arch/arm/boot/dts/stm32mp15xx-dkx.dtsi
archf/arm/boot/dts/stm32mp157a-avenger96.dts
arch/arm/boot/dts/stm32mp151.dtsi
archfarm/boot/dts/stm32mpl15-pinctrl.dtsi
arch/arm/boot/dts/stm32mpl5xxaa-pinctrl.dtsi
archf/arm/boot/dts/stm32mp157.dtsi
arch/arm/boot/dts/stm32mpl157a-dkl.dts
archf/arm/boot/dts/stm32mp15xxac-pinctrl.dtsi
arch/arm/boot/dts/stm32mp153.dtsi
archf/arm/boot/dts/stm32mp15xxad-pinctrl.dtsi
arch/arm/boot/dts/stm32mp157c-dhcom-som.dtsi
archf/arm/boot /dts/stm32mpl15xc.dtsi

~

~

~

~

~

Linux uses the remoteproc kernel framework to load the MC
Firmware into SRAM and start it.

As the MP is already started and configured, it is impossible to
change VTOR to update the vector table address.

- Firmware must be loaded in RETRAM (0x00000000).

Firmwares are stored under /lib/firmware/ directory.

To set the firmware to load:

-+ S echo rproc-m4-fw > /sys/class/remoteproc/remoteprocO/firmware
To start/stop the firmware:

- S echo start > /sys/class/remoteproc/remoteprocO/state
+ S echo stop > /sys/class/remoteproc/remoteproc0O/state

m4 rproc: [§4@1ee00080 {
compatible =

reg =

resets = <&rcc

st,syscfg-holdboot = T

st,syscfg-tz = <&rcc
status = ;

&m4 rproc {
memory-region = <&retram=, <&mcuram=,

&vdevOvringl=, <&vdevObuffer:;
mboxes = <&ipcc 0>, <&ipcc 1>, <&ipcc

mbox-names =

interrupt-parent = <&extiz;
interrupts = ;
status =

&mcuramz2:=,

SvdevBOvringd

¥

~

~

~

~

~

Nearly the same than Linux

First initialize the rproc framework

* #rprocinit

Get the firmware to load:

- # extdload mmc 0:4 S{kernel_addr _r} /lib/firmware/rproc-m4-fw
And load it :

- # rproc load 0 S{kernel_addr_r} ${fFilesize}

To start/stop the firmware:

« #rprocstartO
- #rprocstop 0

In the future

~

~

~

~

~

~

Finalize the opened pull request : https://github.com/RIOT-OS/RIOT/pull/14691
Submit all remaining code as a new pull request

Test support of all STM32 peripherals (QDEC, SPI, PWM, ...)

Implement Hardware SEMaphore (HSEM) to protect shared ressources (EXTI, GPIOSs)

Implement InterProcessor Communication protocol (IPCC) => (core/mbox ?)
Linux Yocto/Buildroot packaging (thanks to KConfig)

https://github.com/RIOT-OS/RIOT/pull/14691

Thank you!

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24

