
: Using RIOT to Evaluate
the Security of LoRaWAN

Frank Hessel

Secure Mobile Networking Lab
Technical University of Darmstadt

fhessel

frnkhssl

fhessel@seemoo.de

Chirp OTLE

2

LoRaWAN in a Nutshell

Low-Power Wide-Area Network Infrastructure

Device Classes Version History

1.0 1.0.1 1.0.2 1.0.3 1.0.4

1.1
A B C

default
+ beacon

continuous rx

low energy consumption

long range

great bandwidth

✔
✔
❌

3

LoRaWAN in a Nutshell

Application Characteristics

deploy & forget sensors battery-powered devices

long range, sparse infrastructure best-effort delivery as default

4

LoRaWAN Security

Risks for LoRaWAN

OTA updates are hard power budget as enabler for DoS

sparse infrastructure facilitates jamming differentiating attacks from loss of connectivity

5

LoRaWAN Security

Selected Attacks on LoRaWAN
Integrity & Authenticity

● Bit-flipping between network and
application server

● Beacon Spoofing
● ACK Spoofing
● Data replay after keystream reuse

(ABP)
Confidentiality

● Frame decryption after key reuse
(ABP)

Availability (DoS)
● Downlink Routing
● Beacon Drifting
● ADR Spoofing
● GW Duty Cycle Exhaustion

Physical Attacks
● Key extraction
● Device impersonation
● Gateway impersonation

attack over the air possible

6

LoRaWAN Security

Focus: Attacks Over-the-Air

End Device

Network
Server

Join Server
(1.1/1.0.4 only)

Application
Server

Application
Server

Application
Server

LoRa logo: lora-alliance.org

End Device

End Device

Gateway

Gateway

IP (wired or cellular)
(+ VPN/TLS?)

IP (backbone network)
(+ VPN/TLS?)

requires on-site access
similar to OTA attacks

not very “interesting”
difficult to intercept

hard to
access

hardware attacks
do not scale

7

ChirpOTLE Framework

Requirements and Design Decisions

COTS HardwareWireless Link Distributed System

● easiest to access
● fewest assumptions

regarding attacker
capabilities

● reproducibility of
results

● show that attacks are
affordable

● Large network size
must be taken care of

● Internet (IP network)
for coordination

8

ChirpOTLE Framework

Framework Architecture

RIOT logo: riot-os.org | Python logo: python.org/community/logos/

ChirpOTLE Node
● real-time on MCU
● COTS LoRa modem
“Companion Application”

ChirpOTLE Controller
● High-level control
● Central entity

ChirpOTLE User
● Takes the role of an outside attacker
● May connect to ED or NS for

gathering results

9

ChirpOTLE Framework

Interfaces, Control, Deployment

https://github.com/seemoo-lab/tpylora_if_stdio lora_if_uart lora_if_tcp

periph_uart gnrc_tcp

ubjson command stream

Python Module: chirpotle

Controller

Companion
Application

REPL experiment.py

TPy Module
LoRa

TPy Module
LoRa

TPy Module
LoRa

TPy Stub TPy Stub TPy Stub
RPC RPC RPC

IPC UART TCP

Notebooks TPy framework manages
● node configurations
● deployment via SSH
● control via RPC

RPC Server

10

ChirpOTLE Framework

Companion Application

lora_if_stdio

lora_daemon
translation of ubjson commands to modem control

lora_if_uart lora_if_tcp

ubjson

periph_uart

lora_modem
low-level real-time control of SX127x radio

(meanwhile removed)

periph_spi periph_gpio(_irq)

Semtech SX127x LoRa Radio

gnrc_tcp

gnrc_sock_udp
(trigger jammer via
network, optional)

ubjson command stream (from Python controller)

the application is built with on
of these communication modules

11

set_lora_channel(freq=868100000, bw=125)

ChirpOTLE Framework

Interaction with Nodes
lora_if_... lora_daemon lora_modemRPC ClientController

Create UBJSON:
{"set_lora_channel": {
 "frequency": 868100000,
 "bandwidth": 125
}}

write()

write()

write_done()

read()UBJSON Result:
{"set_lora_channel": {
 "frequency": 868100000,
 "bandwidth": 125
}}

set_freq(868100000)

set_bw(125)

12

ChirpOTLE Framework

Preconfigured Boards

● TCP via WiFi
● Deployment still needs

UART

● Limited performance
(RIOT process not
running in real-time)

Adafruit Feather M0
(SAMD21)

pycom LoPy4
(ESP32)

Dragino LoRa GPS HAT
(+ Raspberry Pi running Linux)

UART TCP IPC UART TCP IPC UART TCP IPC

13

Attacking the Wireless Interface

LoRa PHY & Transceivers

Preamble PHY
HDR Payload Payload

CRC
C
R
C

LoRaWAN logo: lora-alliance.org

Semtech SX127x LoRa Radio

IRQ:
VALID_HEADER

IRQ:
RX_DONE

Synchronization Demodulation

F I F O (R X & T X)Control Registers

SPI Interface + IRQ lines

14

Attacking the Wireless Interface

Jamming (and Sniffing) LoRa

Jammer close to receiver
● Stronger jamming signal
● Creates less interference

at sniffer

Jammer

End Device Gateway

Uplink Transmission

Sniffer

Sniffer close to transmitter
● Less interference by

jammer
● Stonger signal from

source

6dB attenuation needed
(capture effect)

15

Attacking the Wireless Interface

Jamming Performance: Triggered Jamming

DR0

DR1

DR2

DR3

DR4

DR5

DR6

0% 20% 40% 60% 80% 100%

Missed Payload Corrupted Received Correctly

D
a

ta
 R

a
te

Payload Length:
12 bytes
= min. LoRaWAN
frame length

n=300 per DR

transmission failed
(bad channel)

↑ bitrate
↓ frame length

↓ bitrate
↑ frame length

17

Attacking the Wireless Interface

Reactive Jamming

Preamble PHY
HDR Payload Payload

CRC
HDR
CRC

LoRaWAN logo: lora-alliance.org

Preamble PHY
HDR

HDR
CRC

SX127x Radio

rx frame:

MCU running RIOT
Companion App

tx/jamming frame:

IRQ: VALID_HEADER

polling FIFO

OPMODE=tx

DevAddr complete and matching

18

Attacking the Wireless Interface

Jamming Performance: Reactive Jamming

DR0

DR1

DR2

DR3

DR4

DR5

DR6

0% 20% 40% 60% 80% 100%

Jamming by Message Type

MHDR DevAddr …

DR0

DR1

DR2

DR3

DR4

DR5

DR6

0% 20% 40% 60% 80% 100%

Jamming by Device Address

MHDR DevAddr …

missed
payload corrupted

Frame length:
12 Byte

n=300 per DR/Case

Jammer located
close to receiver

received correclty

19

Using the Framework

Installing ChirpOTLE
ChirpOTLE comes with a central shell script
for installation and management.

Toolchains (e.g. xtensa or gcc-arm-none-
eabi) for platforms are installed in local
folders and added to the path ad-hoc when
related boards are used.

Relying on the distributor (Debian, Ubuntu,
…) often led to version incompatibilities.

$ git clone \
 git@github.com:seemoo-lab/chirpotle.git
$ cd chirpotle
$./chirpotle.sh install

20

Using the Framework

Device Placement & Node Configuration
The confeditor command helps managing
the connected nodes.

$./chirpotle.sh confeditor

=========== Main Menu ===========

What do you want to do?

 List/edit controller configurations
 List/edit node profiles
 Save changes and quit

=== Controller Configurations ===

 Configuration: default
 Create new configuration
 Go back

Office 42

Office 23

Controller

UART

UART

UART

21

Using the Framework

Device Placement & Node Configuration
$./chirpotle.sh confdump
Configuration: default
 alice (office23)
 Hostname: 10.10.23.1:42337
 alice_hackrf (HackRF)
 Capture Dir: /tmp
 alice_feather (LoRa)
 Firmware: lora-feather-m0
 Serial Port: /dev/ttyACM0
 Connection: uart
 alice_lopy4 (LoRa)
 Firmware: lopy4-uart
 Serial Port: /dev/ttyUSB0
 Connection: uart
 bob (office42)
 Hostname: 10.10.42.1:42337
 bob_lora_hat (LoRa)
 Firmware: native-raspi
 SPI Port: /dev/spidev0.0
 Connection: spi
 bob_lopy4 (LoRa)
 Firmware: lopy4-uart
 Serial Port: /dev/ttyUSB0
 Connection: uart

With confdump you get an overview of the
available configurations.

Office 23
10.10.23.1

Office 42Controller

10.10.42.1

UART

UART

UART

22

Using the Framework

Preparing the Boards
deploy builds the firmware on the controller, sends
it to the nodes and they upload it to the boards.

$./chirpotle.sh deploycheck
Running Custom Node Script ...
 10.10.42.1 ✔ ️Success: Accessible via SSH as root
 10.10.42.1 ✔ ️Success: Python 3 installed
 10.10.42.1 ✔ ️Success: pip for Python 3 installed
 10.10.42.1 ✔ ️Success: git installed
 10.10.42.1 ✔ ️Success: gcc and make installed
 10.10.42.1 ✔ ️Success: HackRF tools installed
 10.10.23.1 ✔ ️Success: Accessible via SSH as root
 10.10.23.1 ✔ ️Success: Python 3 installed
 10.10.23.1 ✔ ️Success: pip for Python 3 installed
 10.10.23.1 ✔ ️Success: git installed
 10.10.23.1 ✔ ️Success: gcc and make installed
 10.10.23.1 ✔ ️Success: HackRF tools installed

$./chirpotle.sh deploy
Running Custom Node Script ...

(…)

$./chirpotle.sh restartnodes

Office 23

Office 42Controller

UART

UART

UART

bin bin binbin bin bin

23

Using the Framework

Modes of Interaction
Python REPL Jupyter Notebook Predefined Script

$./chirpotle.sh interactive $./chirpotle.sh notebook $./chirpotle.sh run script.py

24

A Practical Example

Delaying Traffic
Sniff and jam frames for device with DevAddr = DEADBEEF
alice.receive()
bob.enable_sniffer(action='internal', # use jammer on board
 pattern = [0, 0xDE, 0xAD, 0xBE, 0xEF],
 mask = [0, 0xff, 0xff, 0xff, 0xff))

Wait for frame to be sniffed
frm = alice.fetch_frame()
while frm is None:
 frm = alice.fetch_frame()
 if frm is not None and \
 frm['payload'][1:5] != [0xDE, 0xAD, 0xBE, 0xEF]:
 frm = None

Now we have a frame and set a delay
(Bob continues jamming until standby() is called for him)
alice.standby()
time.sleep(120)

Now we disable the jammer and play the delayed frame
bob.standby()
alice.transmit_frame(frm['payload'], blocking=True)

tc, devices = tpy_from_context()

Node at transmitter
alice = tc.nodes['alice']['lopy']

Node at receiver
bob = tc.nodes['bob']['lopy']

Channel config
channel = {
 'frequency': 868100000, # Hz
 'bandwidth': 250, # kHz
 'spreadingfactor': 7,
 'syncword': 18, # private network
 'codingrate': 5,
 'invertiqtx': True,
 'invertiqrx': False,
 'explicitheader': True
}

Initialize boards
alice.set_lora_channel(**channel)
bob.set_lora_channel(**channel)

25

Limitations & Next Steps
● Control channel via ubjson an stream processing is complex

– Could maybe make use of riotctrl
● Only SX127x transceivers supported → single channel

– Add support for SX1301 (LoRa concentrator)
● Build system and remote flashing needs much manual work

(e.g., installing esptool, building bossa, the actual flashing on the nodes)
– Still looking for a good solution

→ any input appreciated

26

Frank Hessel
fhessel@seemoo.de

Technische Universität Darmstadt
Secure Mobile Networking Lab – SEEMOO
Department of Computer Science
Pankratiusstraße 2
D-64289 Darmstadt

Phone: +49 6151 16-25474
Fax: +49 6151 16-25471
Web: https://seemoo.de

Available on GitHub:
https://github.com/seemoo-lab/chirpotle

Related Publication:
(more focused on specification issues and attacks)
Frank Hessel, Lars Almon, and Flor Álvarez:
ChirpOTLE: A Framework for Practical LoRaWAN
Security Evaluation, ACM WiSec '20
Paper: https://doi.org/10.1145/3395351.3399423
Talk: https://youtu.be/0BEU7mPADSk?t=20566

Chirp OTLE

Contact

Prof. Dr. Matthias Hollick
Scientific Coordinator
Anne Hofmeister
Manager
www.emergencity.de
manager@emergencity.de
Hochschulstraße 1
64289 Darmstadt
+49 6151 16-25482

About us

The LOEWE center emergenCITY, established in 2020,
combines the extensive research in Hesse on resilient and
crisis-proof infrastructures in digital cities.
emergenCITY is an interdisciplinary and multi-site
collaboration led by Technische Universität Darmstadt,
Universität Kassel, and Philipps-Universität Marburg.
Twenty-three professors from the fields of computer science,
electrical engineering and information technology, mechanical
engineering, social sciences and history, architecture,
economics, and law conduct research in four interlinked
program areas: City and Society, Information, Communication,
and Cyber-Physical Systems.
Also, the Federal Office of Civil Protection and Disaster
Assistance (BBK), the City of Darmstadt, the German
Aerospace Center (DLR), and more than 40 other partners
from industry and science are involved in the center.

https://github.com/seemoo-lab/chirpotle
https://doi.org/10.1145/3395351.3399423
https://youtu.be/0BEU7mPADSk?t=20566

