
Integration of a Cryptographic API
with Configurable Hardware and

Software Backends in RIOT

Lena Boeckmann

September 8, 2021

1 / 27



Crypto Support in RIOT

• RIOT provides built-in
software implementations
and third party libraries

• Only pure software implementations

• Run on supported platforms,
but are quite inefficient

Figure: Currently supported crypto
backends in RIOT

2 / 27



Cryptographic Backends

Crypto performed
by software libraries

Crypto performed
by hardware without
key storage

Crypto performed
by hardware
with key storage

Crypto performed
by external hardware
with key storage

3 / 27



Transparent Drivers for Unprotected Keys

• Keys are stored in RAM or ROM

• Can be operated on by any
implementation that accepts
plain text key material

• User can freely choose between
hardware or software implementations

Definition

Transparent drivers are software
implementations and drivers that
can be invoked without being
dependent on the actual location
of a key.

4 / 27



Opaque Drivers for Protected Keys

• Dedicated key storage
areas (often slots)

• Only crypto processor
can access key material

• Caller provides key identifier
or slot number

• Only driver assigned to processor the
key is located in can be invoked

Definition

Opaque drivers operate on
protected keys. They are bound to
a key location and can not be
chosen freely.

5 / 27



Benefits of Hardware Crypto in Symmetric Operations

• Accelerator on nRF52840
is faster than RIOT
software implementation

• Secure Element ATECC608A is
less efficient, comes with benefit
of protected storage

6 / 27



Benefits of Hardware Crypto in Asymmetric Operations

• Secure Element ATECC608A is
faster than software

• Accelerator on nRF52840 outperforms
software and secure element

7 / 27



Challenges and Solution

• Platforms with varying hardware crypto
capabilities need to be supported

• Both protected and unprotected
key storage need to be supported

• Hardware and software backends should be
exchanged transparently beneath a unified API

Our Solution:
Implementing the ARM Platform Security Architecture Crypto API

8 / 27



1 Introduction

2 What is PSA Crypto?

3 Why should we use PSA Crypto?

4 Reference Implementations

5 Integration in RIOT

6 Implementation Status and Outlook

9 / 27



What is PSA?

• ARM Platform Security Architecture

• Framework for development of secure
IoT systems

• Threat models, specifications and
reference implementations

• Implementations may be certified
through PSA Certified scheme

• Open source test suite for
implementation verification

Analyze:
Threat Modeling

1

Architect:
Hardware & Firmware specs

2

Implement:
Hardware & Software

3

Implement:
Hardware & Software

3

Certify:
Test & Certify

4

PSA Certified

10 / 27



What is PSA?

• ARM Platform Security Architecture

• Framework for development of secure
IoT systems

• Threat models, specifications and
reference implementations

• Implementations may be certified
through PSA Certified scheme

• Open source test suite for
implementation verification

Analyze:
Threat Modeling

1

Architect:
Hardware & Firmware specs

2

Implement:
Hardware & Software

3

Implement:
Hardware & Software

3

Certify:
Test & Certify

4

PSA Certified

10 / 27



What is PSA?

• ARM Platform Security Architecture

• Framework for development of secure
IoT systems

• Threat models, specifications and
reference implementations

• Implementations may be certified
through PSA Certified scheme

• Open source test suite for
implementation verification

Analyze:
Threat Modeling

1

Architect:
Hardware & Firmware specs

2

Implement:
Hardware & Software

3

Implement:
Hardware & Software

3

Certify:
Test & Certify

4

PSA Certified

10 / 27



What is PSA?

• ARM Platform Security Architecture

• Framework for development of secure
IoT systems

• Threat models, specifications and
reference implementations

• Implementations may be certified
through PSA Certified scheme

• Open source test suite for
implementation verification

Analyze:
Threat Modeling

1

Architect:
Hardware & Firmware specs

2

Implement:
Hardware & Software

3

Implement:
Hardware & Software

3

Certify:
Test & Certify

4

PSA Certified

10 / 27



What is PSA?

• ARM Platform Security Architecture

• Framework for development of secure
IoT systems

• Threat models, specifications and
reference implementations

• Implementations may be certified
through PSA Certified scheme

• Open source test suite for
implementation verification

Analyze:
Threat Modeling

1

Architect:
Hardware & Firmware specs

2

Implement:
Hardware & Software

3

Implement:
Hardware & Software

3

Certify:
Test & Certify

4

PSA Certified

10 / 27



What is PSA?

• Where can we find PSA Crypto?

Analyze:
Threat Modeling

1

Architect:
Hardware & Firmware specs

2

Implement:
Hardware & Software

3

Implement:
Hardware & Software

3

Certify:
Test & Certify

4

PSA Certified

10 / 27



What is PSA?

• Where can we find PSA Crypto?

Analyze:
Threat Modeling

1

Architect:
Hardware & Firmware specs

2

Implement:
Hardware & Software

3

Implement:
Hardware & Software

3

Certify:
Test & Certify

4

PSA Certified

10 / 27



What is the PSA Crypto API?

Implement: PSA Functional APIs

Secure
Storage

Crypto Attestation

• Platform independent, suitable for IoT devices

• Designed with usability and portability in mind

11 / 27



What is the PSA Crypto API?

Implement: PSA Functional APIs

Secure
Storage

Crypto Attestation

• Platform independent, suitable for IoT devices

• Designed with usability and portability in mind

11 / 27



What is the PSA Crypto API?

Implement: PSA Functional APIs

Secure
Storage

Crypto Attestation

• Platform independent, suitable for IoT devices

• Designed with usability and portability in mind

11 / 27



1 Introduction

2 What is PSA Crypto?

3 Why should we use PSA Crypto?

4 Reference Implementations

5 Integration in RIOT

6 Implementation Status and Outlook

12 / 27



What do we get?

PSA Crypto Complete API design specification

Arch Tests Test Suite for verification

Implementation
Freedom

Total freedom under the hood

13 / 27



What do we get?

PSA Crypto Complete API design specification

Arch Tests Test Suite for verification

Implementation
Freedom

Total freedom under the hood

13 / 27



What do we get?

PSA Crypto Complete API design specification

Arch Tests Test Suite for verification

Implementation
Freedom

Total freedom under the hood

13 / 27



Backend Flexibility

Application

PSA Crypto API

RIOT
Crypto

Software
Libraries

Hardware
Drivers

• Hardware agnostic
application
development possible

• Backends can be
exchanged and
combined as needed

• Use of multiple
secure elements
possible

14 / 27



Secure Element Handling

• Multiple SE’s can be managed
by a driver registry

• Calls are dispatched to appropiate
driver depending on key location

• PSA Crypto reference implementation
provides an API for SEs

15 / 27



Handling Keys in Protected Storage

1 Application provides key
attributes with key location

2 Attributes are stored and
opaque SE driver is invoked

3 SE generates and stores key
in free slot, returns slot
number

4 Key manager returns key ID
to application for later use

16 / 27



Handling Keys in Protected Storage

1 Application provides key
attributes with key location

2 Attributes are stored and
opaque SE driver is invoked

3 SE generates and stores key
in free slot, returns slot
number

4 Key manager returns key ID
to application for later use

16 / 27



Handling Keys in Protected Storage

1 Application provides key
attributes with key location

2 Attributes are stored and
opaque SE driver is invoked

3 SE generates and stores key
in free slot, returns slot
number

4 Key manager returns key ID
to application for later use

16 / 27



Handling Keys in Protected Storage

1 Application provides key
attributes with key location

2 Attributes are stored and
opaque SE driver is invoked

3 SE generates and stores key
in free slot, returns slot
number

4 Key manager returns key ID
to application for later use

16 / 27



Handling Externally Provided Keys

1 Application provides
attributes and key material

2 Both are stored in local
memory

3 Key manager returns key ID
for later use

17 / 27



Handling Externally Provided Keys

1 Application provides
attributes and key material

2 Both are stored in local
memory

3 Key manager returns key ID
for later use

17 / 27



Handling Externally Provided Keys

1 Application provides
attributes and key material

2 Both are stored in local
memory

3 Key manager returns key ID
for later use

17 / 27



1 Introduction

2 What is PSA Crypto?

3 Why should we use PSA Crypto?

4 Reference Implementations

5 Integration in RIOT

6 Implementation Status and Outlook

18 / 27



What is mbedTLS doing?

• Working on reference implementations for PSA Functional APIs

• We’re following their progress and have been in contact

• Still under construction

19 / 27



Driver Wrapper Generation

Support of different backends in mbedTLS

• Provide information about available drivers at compile time

• Driver description files in JSON format

• Code generator will parse descriptions and generate wrapper

• Wrapper contains calls to available drivers and software fallback

• Code generator does not exist, yet

20 / 27



1 Introduction

2 What is PSA Crypto?

3 Why should we use PSA Crypto?

4 Reference Implementations

5 Integration in RIOT

6 Implementation Status and Outlook

21 / 27



Configuring Crypto Backends with Kconfig

• If CPU defines symbol for hardware crypto (e.g. HAS HW AES 128 CBC),
hardware is default backend

• User may change default configuration if desired

Use AES 128 CBC
Hardware
AES 128
CBC?

Use Software
AES 128 CBC

Use Hardware
AES 128 CBC

no

yes

22 / 27



Menuconfig Walkthrough

23 / 27



Menuconfig Walkthrough

23 / 27



Menuconfig Walkthrough

23 / 27



Menuconfig Walkthrough

23 / 27



Menuconfig Walkthrough

23 / 27



PSA Crypto Implementation Structure

PSA Crypto API

Key Management & Location Dispatch

SE Driver Dispatch Algorithm Dispatch

SE API SE API

Vendor
API

Vendor
API

SE
Driver

SE
Driver

Spec. Algorithm API

Vendor
API

Vendor
API

Vendor
API

opaq.
Driver

trans.
Driver

Software
Driver

24 / 27



PSA Crypto Implementation Structure

PSA Crypto API

Key Management & Location Dispatch

SE Driver Dispatch Algorithm Dispatch

SE API SE API

Vendor
API

Vendor
API

SE
Driver

SE
Driver

Spec. Algorithm API

Vendor
API

Vendor
API

Vendor
API

opaq.
Driver

trans.
Driver

Software
Driver

24 / 27



PSA Crypto Implementation Structure

PSA Crypto API

Key Management & Location Dispatch

SE Driver Dispatch

Algorithm Dispatch

SE API SE API

Vendor
API

Vendor
API

SE
Driver

SE
Driver

Spec. Algorithm API

Vendor
API

Vendor
API

Vendor
API

opaq.
Driver

trans.
Driver

Software
Driver

24 / 27



PSA Crypto Implementation Structure

PSA Crypto API

Key Management & Location Dispatch

SE Driver Dispatch

Algorithm Dispatch

SE API SE API

Vendor
API

Vendor
API

SE
Driver

SE
Driver

Spec. Algorithm API

Vendor
API

Vendor
API

Vendor
API

opaq.
Driver

trans.
Driver

Software
Driver

24 / 27



PSA Crypto Implementation Structure

PSA Crypto API

Key Management & Location Dispatch

SE Driver Dispatch Algorithm Dispatch

SE API SE API

Vendor
API

Vendor
API

SE
Driver

SE
Driver

Spec. Algorithm API

Vendor
API

Vendor
API

Vendor
API

opaq.
Driver

trans.
Driver

Software
Driver

24 / 27



PSA Crypto Implementation Structure

PSA Crypto API

Key Management & Location Dispatch

SE Driver Dispatch Algorithm Dispatch

SE API SE API

Vendor
API

Vendor
API

SE
Driver

SE
Driver

Spec. Algorithm API

Vendor
API

Vendor
API

Vendor
API

opaq.
Driver

trans.
Driver

Software
Driver

24 / 27



Algorithm Dispatch

Algorithm Dispatch
alg?

key attr.type?
key attr.size?

alg = PSA ALG CBC
key attr.type = PSA KEY TYPE AES

key attr.size = 128

Spec. Algorithm API

Vendor APIVendor API Vendor API

transp.
Driver

opaque
Driver

Software
Library

aes 192 cbcaes 128 cbc aes 256 cbc

Vendor APIVendor API Vendor API

transp.
Driver

opaque
Driver

Software
Library

25 / 27



Algorithm Dispatch

Algorithm Dispatch
alg?

key attr.type?
key attr.size?

alg = PSA ALG CBC
key attr.type = PSA KEY TYPE AES

key attr.size = 128

Spec. Algorithm API

Vendor APIVendor API Vendor API

transp.
Driver

opaque
Driver

Software
Library

aes 192 cbcaes 128 cbc aes 256 cbc

Vendor APIVendor API Vendor API

transp.
Driver

opaque
Driver

Software
Library

25 / 27



Application Example of AES Encryption
1 uint8_t key[] = { ... };

2 uint8_t key_length = AES_128_KEY_LENGTH;

3

4 psa_key_id_t key_id;

5 psa_key_attributes_t attr = psa_key_attributes_init ();

6

7 // Set key attributes

8 psa_key_lifetime_t lifetime = PSA_KEY_LOCATION_LOCAL_STORAGE |

9 PSA_KEY_PERSISTENCE_VOLATILE;

10

11 psa_set_key_lifetime (&attr , lifetime );

12 psa_set_key_algorithm (&attr , PSA_ALG_CBC_NO_PADDING );

13 psa_set_key_usage_flags (&attr , PSA_KEY_USAGE_ENCRYPT );

14 psa_set_key_type (&attr , PSA_KEY_TYPE_AES );

15 psa_set_key_bits (&attr , 128);

16

17 // Import key and store it as specified in lifetime

18 psa_import_key (&attr , key , key_length , &key_id );

19

20 // Encrypt some plaintext with key beloning to key_id

21 psa_cipher_encrypt(key_id , PSA_ALG_CBC_NO_PADDING , plaintext ,

22 plaintext_length , output , output_size , &output_length );

26 / 27



Implementation Status

Component Status Description Next Steps

PSA Arch Testsuite
as package

4 Hash tests work Enable other algorithm tests

Volatile Key Management 4

Volatile keys in
local memory and
SEs can be handled

Add support for
persistent keys

Cryptographic Operations 4
Some hashes and
ciphers work

Extend support for
cryptographic operations

Secure Element Handling 4
Multiple devices
can be handled

Add support for other devices

Outlook: Support of operations in trusted execution environments

27 / 27


	Introduction
	What is PSA Crypto?
	Why should we use PSA Crypto?
	Reference Implementations
	Integration in RIOT
	Implementation Status and Outlook

