
TRACE32 and RIOT OS 1

Debug and Profile with
TRACE32® and RIOT OS

Richard Copeman | richard.copeman@lauterbach.com

1

AGENDA

1. Who are Lauterbach
2. TRACE32® Overview
3. TRACE32® Kernel Awareness
4. Usage Examples

2

TRACE32 and RIOT OS 2

1) Who are Lauterbach

3

Who are Lauterbach

Largest Manufacturer of debuggers worldwide
Founded in 1979
Based in Höhenkirchen, near Munich
Privately owned by the founders
Approx. 120 employees worldwide, with subsidiaries in

China, France, Italy, Japan, Tunisia, UK, USA
Other territories covered by exclusive highly technical distributors

4

4

TRACE32 and RIOT OS 3

The Lauterbach Difference

Company is privately owned and engineering led
No chasing quarterly results or kow-towing to share holders
>80% worldwide staff are engineers

All R&D, Engineering, and Production takes place at our facility outside Munich
Excellent reputation for providing timely, high quality support

Even Mr. Lauterbach still answers support calls!

We only make debuggers
We have to work with all compilers, RTOS, 3rd party tools, etc.
No dilution of effort

Long-term close relationships with silicon vendors
Support for tens of thousands of devices from approx. 75 silicon vendors!

5

5

2) TRACE32® Tool Overview

6

TRACE32 and RIOT OS 4

Modular tools designed to Grow

7

+ =

Debug tools

7

Modular tools designed to Grow

8

+

=

+

+

Debug and Trace tools

8

TRACE32 and RIOT OS 5

Modular tools designed to Grow

9

Digital and Analogue Logic Trace tools

9

3) TRACE32® Kernel Awareness

10

TRACE32 and RIOT OS 6

What is a Kernel Awareness

Extension to the TRACE32® debugger
Currently over 80 RTOS’ supported
All delivered free of charge (included on DVD or in software download image)

Loaded at runtime
Two files: kernel awareness and menu to access features
Some optional scripts to simplify complex operations

Provides access to RTOS resources at runtime
Display system objects, such as tasks, threads, semaphores, mailboxes, etc.
Set task aware breakpoints
Task aware performance monitoring
Task aware tracing

May be built by Lauterbach, a TRACE32 user, or the RTOS developer

11

11

To create a kernel awareness plugin

Requires the Extension Development Kit (EDK)
Free of Charge
Signed NDA required
Supports Windows and Linux build hosts

I used Fedora Core 31

EDK contains
C Library Routines
Make files
Custom Embedded C Cross compiler
Documentation
Examples

12

12

TRACE32 and RIOT OS 7

Build Process Overview

Take existing example and adapt it
Much easier than starting from scratch
Makefile and build environment already set
Skeleton functions exist for most OS objects

A few mandatory functions need to be provided
Info about current task/thread
List of all tasks/threads
Details of registers saved/restored during a context switch

Everything else is optional
All of the optional components are defined in the main awareness file
Define new commands
Define new functions
Define anything else to make the user’s life easier when debugging your kernel/RTOS

13

13

Other Requirements

Header files and some source files for RTOS
Documentation and debug compiled kernel may be used

RIOT OS is provided in source
Header files and Source files are well documented
Very helpful and knowledgeable community

Working build environment
To create example applications to test the awareness against
Most of this can often be performed in a simulated environment, using TRACE32®

Supported hardware target
Final testing on real hardware with real tools J

14

14

TRACE32 and RIOT OS 8

4)Usage Examples

15

New Menu

The menu file is part of the awareness
Added to the UI after the awareness has been loaded
Provides convenient access to many OS specific views

16

16

TRACE32 and RIOT OS 9

Task and Thread Lists

Display a list of active tasks and threads
Where target supports dual port memory, lists are dynamic
‘magic’ column has a right-click menu giving access to extra information about each task/thread

17

17

Access to System Objects

18

18

TRACE32 and RIOT OS 10

Switch between tasks/threads

Handy dropdown on status bar to quickly switch between task or threads
All open windows (unless otherwise anchored) will switch to the new context.

Source listing
Registers
Variables

19

19

Stack frame for each Task/thread

View stack usage for each task/thread
Supports standard and non-standard stack pre-fill values

20

20

TRACE32 and RIOT OS 11

Stack frame for each Task/thread

View call stack for each task or thread
Walk up and down the call stack – all relevant open windows change their view(s)

21

21

Task/Thread Aware Breakpoints

Use dropdown to set task or thread aware
breakpoints

22

22

TRACE32 and RIOT OS 12

JTAG based task/thread profiling

23

Use whatever features the CPU provides
If none, use Stop&Go
May be some level of intrusion

Runtime will be indicated on display

23

Trace based task/thread profiling

Highly accurate task/thread runtime profiling

Timeline view

24

24

TRACE32 and RIOT OS 13

Trace based task/thread profiling

Raw task/thread switch data

25

Thread magic
Time since last switch

Time to next switch

25

THANK YOU!
Richard Copeman
richard.copeman@lauterbach.com

© [Maksym-Yemelyanov] /123rf.com

26

