
Lessons from TinyOS 

Vlado Handziski (TU Berlin)
@vlahan



One of the first customized operating systems 
for resource-constrained 

(wireless) networked embedded systems

TinyOS? 



TinyOS Goals and Features
● High concurrency under limited resources

○ Event-driven
○ Single-stack execution

● Flexibility and adaptivity
○ Component-based, expressed using nesC
○ Both portable and platform-specific abstractions

● High robustness
○ Static allocation
○ Static binding



● 1999 UC Berkeley project part of DARPA NEST program
● 2000 Initial public release, mix of C macros and Perl
● 2002 First version using the nesC language
● 2004 UC Berkeley and TU Berlin release MSP430 port
● 2006 TinyOS Alliance formed, 

Complete rewrite, TinyOS 2.0 released
● 2008 TinyOS 2.1.0 released
● 2010 TinyOS 2.1.1 released
● 2012 TinyOS 2.1.2 (BLIP:6lowPAN, TinyCoAP), GitHub
● 2014 TinyOS 2.2, new build system

A Bit of History...



TinyOS Alliance
● Representatives from both academia and industry, 

organized in a number of topical “Working Groups”
○ Guided by a charter and having “ownership” of a 

subset of the code tree
○ Individual membership and decision policies

● Core [2005-2014]: TinyOS core, hardware abstractions
● Net2 [2005-2014]: multihop protocols, CTP, BLIP
● 802.15.4, Zigbee, Doc, Sim, Tools, Testbeds



TinyOS Development Process
● Centered around proposing and finalizing 

“TinyOS Enhancement Proposals (TEPs)” 
● Document core design principles, major abstractions 

and APIs
○ Best Current Practice TEPs 
○ Documentary TEPs
○ Experimental and Informational TEPs

● Very valuable especially for new developers
○ Faster on-boarding
○ Higher-quality code aligned with core principles



TEP Examples
● BCP

○ TEP2: Hardware Abstraction Architecture
○ TEP3: Coding Standards
○ ...

● Documentation
○ TEP101: Analog-to-Digital Converters (ADCs)
○ TEP102: Timers
○ TEP103: Permanent Data Storage (Flash)
○ TEP106: Schedulers and Tasks
○ TEP107: TinyOS 2.x Boot Sequence
○ TEP108: Resource Arbitration
○ TEP109: Sensors and Sensor Boards
○ ...



Impact of Process
“good-enough is sometimes better than perfect”

● TEP-centered development process focused on 
completeness, finding the “optimal” solution
○ Required a lot of iterations, long discussions
○ Many WGs (including core) pushing for consensus among all 

members before finalization
○ Results were “immutable” after finalization

● Slow speed and lack of agility were the price
○ Some TEPs needed years to be finalized

● Need for sponsoring WG deterred external contributions
● Incompatible with modern development processes

○ 2013 attempt was made to merge GitHub feature request issues 
management with the TEP process, without big success



Impact of Process
“faster is sometimes better than complete”

● Very conservative and comprehensive release testing 
process
○ All testing apps were (re)tested on all platforms after each change 

post code freeze
○ Many test applications include multi-node protocol tests, not easily 

evaluated by classical continuous integration tools
○ Initial efforts by ETH and TUB to more closely integrate release 

process with testbeds did not get traction
● As a result, major releases roughly each two years

○ But HEAD on the development branch was kept almost as stable as a 
release



Impact of Academia
“too much innovation can kill you”

● Constant tension between innovating at levels relevant 
for research vs. the needs of the “average” user

● Constant tension between designing the OS towards 
flexibility vs. streamlined implementation of a single 
“standard” solution
○ E.g. protocol stack architecture (heaps vs. layered)

● Underestimating compounding effects on complexity 
when layering new concepts
○ Innovating concurrently on language and code organization, 

and OS architecture and abstractions



Impact of Academia
“surviving the PhD student half-life”

● Lack of continuity in the developer community
○ A lot of code in some ways related to research work
○ Significant churn in developers as a result of students graduating, 

projects ending
○ “Generation” changes are synchronized, minimizing “overlaps”

● Lack of real incentive for producing highest quality code
○ Code often missing the last 10-20% polishing that is needed to 

minimize bugs and facilitate long term maintenance
○ E.g. BLIP leading to non-aligned memory access errors on specific 32-

bit CPUs (NXP JN 516x) due to implicit assumptions of working on a 
16-bit platform, etc.



Impact of Industry
“beware of companies bringing gifts”

● TinyOS has benefited from close cooperation with many 
companies: Intel, Crossbow/Memsic, Moteiv/Sentila, 
ArchRock/Cisco, PeoplePower, Zolertia, etc.
○ Full-time, well-trained software engineers, resulting in high quality 

code contributions
● But interaction with industry can also be a liability and 

source of tensions in the community
○ Exposing the project to the business interests
○ Differing goals, stability vs. continuous innovation, leading to 

dissonance in design decisions
○ Can change focus, leave code unsupported, poach core developers



Impact of Licensing
“liberal licenses are a double-edged sword”

● All TinyOS core code is open sourced under a very 
liberal “modified BSD” license
○ It reduces the barriers in the development process among many 

diverse entities (including academia and industry) and is especially 
suited to the nature of the project (OS component library)

● However, it also has important shortcomings and has 
caused major tensions in the TinyOS community
○ Not being able to fully track “dark” usage of TinyOS code 

in industrial products
○ Companies forking TinyOS and innovating into external projects

■ Motiv: Boomerang [Apache License]
■ PeoplePower: OSHAN



Thanks!
vlahan@vlahan.net

mailto:vlahan@vlahan.net
mailto:vlahan@vlahan.net

