Lessons from TinyOS

Vlado Handziski (TU Berlin)
@NIEWER



TinyOS?

One of the first customized operating systems
for resource-constrained
(wireless) networked embedded systems




TinyOS Goals and Features

e High concurrency under limited resources
o Event-driven
o Single-stack execution

e Flexibility and adaptivity
o Component-based, expressed using nesC
o Both portable and platform-specific abstractions

e High robustness
o Static allocation
o Static binding



A Bit of History...

1999
2000
2002
2004
2006

2008
2010
2012
2014

UC Berkeley project part of DARPA NEST program
Initial public release, mix of C macros and Perl
First version using the nesC language

UC Berkeley and TU Berlin release MSP430 port
TinyOS Alliance formed,

Complete rewrite, TinyOS 2.0 released

TinyOS 2.1.0 released

TinyOS 2.1.1 released

TinyOS 2.1.2 (BLIP:6lowPAN, TinyCoAP), GitHub
TinyOS 2.2, new build system



TinyOS Alliance

Representatives from both academia and industry,
organized in a number of topical “Working Groups”

o Guided by a charter and having “ownership” of a

subset of the code tree
o Individual membership and decision policies

Core [2005-2014]: TinyOS core, hardware abstractions
Net2 [2005-2014]. multihop protocols, CTP, BLIP
802.15.4, Zigbee, Doc, Sim, Tools, Testbeds



TinyOS Development Process

Centered around proposing and finalizing

“TinyOS Enhancement Proposals (TEPS)”
Document core design principles, major abstractions
and APIs

o Best Current Practice TEPs

o Documentary TEPs

o Experimental and Informational TEPs

Very valuable especially for new developers

o Faster on-boarding

o Higher-quality code aligned with core principles



TEP Examples

® BCP

©)
O
O

TEP2: Hardware Abstraction Architecture
TEP3: Coding Standards

e Documentation

O O 0O O 0 O O O

TEP101:
TEP102:
TEP103:
TEP106:
TEP107:
TEP108:
TEP109:

Analog-to-Digital Converters (ADCs)
Timers

Permanent Data Storage (Flash)
Schedulers and Tasks

TinyOS 2.x Boot Sequence
Resource Arbitration

Sensors and Sensor Boards



Impact of Process

“good-enough is sometimes better than perfect”

e TEP-centered development process focused on

completeness, finding the “optimal” solution
o Required a lot of iterations, long discussions

o Many WGs (including core) pushing for consensus among all
members before finalization

o Results were “immutable” after finalization

e Slow speed and lack of agility were the price
o Some TEPs needed years to be finalized

e Need for sponsoring WG deterred external contributions

e |Incompatible with modern development processes

o 2013 attempt was made to merge GitHub feature request issues
management with the TEP process, without big success



Impact of Process

“faster is sometimes better than complete”

e \ery conservative and comprehensive release testing

Process
o All testing apps were (re)tested on all platforms after each change
post code freeze
o Many test applications include multi-node protocol tests, not easily
evaluated by classical continuous integration tools
o Initial efforts by ETH and TUB to more closely integrate release
process with testbeds did not get traction

e As a result, major releases roughly each two years
o But HEAD on the development branch was kept almost as stable as a
release



Impact of Academia

“too much innovation can kill you”

e C(Constant tension between innovating at levels relevant
for research vs. the needs of the “average” user

e C(Constant tension between designing the OS towards
flexibility vs. streamlined implementation of a single

“standard” solution
o E.g. protocol stack architecture (heaps vs. layered)

e Underestimating compounding effects on complexity
when layering new concepts

o Innovating concurrently on language and code organization,
and OS architecture and abstractions



Impact of Academia

“surviving the PhD student half-life”

e Lack of continuity in the developer community
o A lot of code in some ways related to research work

o Significant churn in developers as a result of students graduating,
projects ending

o “Generation” changes are synchronized, minimizing “overlaps”

e Lack of real incentive for producing highest quality code
o Code often missing the last 10-20% polishing that is needed to
minimize bugs and facilitate long term maintenance
o E.g. BLIP leading to non-aligned memory access errors on specific 32-

bit CPUs (NXP JN 516x) due to implicit assumptions of working on a
16-bit platform, etc.



Impact of Industry

“beware of companies bringing gifts”

e TinyOS has benefited from close cooperation with many
companies: Intel, Crossbow/Memsic, Moteiv/Sentila,

ArchRock/Cisco, PeoplePower, Zolertia, etc.
o Full-time, well-trained software engineers, resulting in high quality
code contributions

e But interaction with industry can also be a liability and

source of tensions in the community
o Exposing the project to the business interests
o Differing goals, stability vs. continuous innovation, leading to
dissonance in design decisions
o Can change focus, leave code unsupported, poach core developers



Impact of Licensing

“liberal licenses are a double-edged sword”

e All TinyOS core code is open sourced under a very

liberal “modified BSD” license

o It reduces the barriers in the development process among many
diverse entities (including academia and industry) and is especially
suited to the nature of the project (OS component library)

e However, it also has important shortcomings and has

caused major tensions in the TinyOS community
o Not being able to fully track “dark” usage of TinyOS code
in industrial products
o Companies forking TinyOS and innovating into external projects
m Motiv: Boomerang [Apache License]
m PeoplePower: OSHAN



Thanks!

vilahan@vlahan.net



mailto:vlahan@vlahan.net
mailto:vlahan@vlahan.net

