
Performance evaluation of
cryptographic operations on
a SAMR21-XPRO board

Mathias Tausig, Silvia Schmidt

1

Motivation

Ongoing research project concerned with secure
firmware upgrade for IoT devices.
Position paper with our current state of development
has been presented to the Internet of Things Software
Update Workshop (IoTSU) held by the Internet
Architecture Board(IAB) in Dublin in June 2016:
Secure Firmware Update Over the Air in the
Internet of Things Focusing on Flexibility and
Feasibility - Proposal for a Design
by Silvia Schmidt, Mathias Tausig, Matthias Hudler,
Georg Simhandl

2

Motivation

> The Internet of Things (IoT) is becoming more and
more a part of our everyday life

> Reports of incidents are becoming more frequent
> People are afraid
> If we want IoT to be a success, something needs to

be done

3

Motivation

> The Internet of Things (IoT) is becoming more and
more a part of our everyday life

> Reports of incidents are becoming more frequent

> People are afraid
> If we want IoT to be a success, something needs to

be done

4

Motivation

> The Internet of Things (IoT) is becoming more and
more a part of our everyday life

> Reports of incidents are becoming more frequent
> People are afraid

> If we want IoT to be a success, something needs to
be done

5

Motivation

> The Internet of Things (IoT) is becoming more and
more a part of our everyday life

> Reports of incidents are becoming more frequent
> People are afraid
> If we want IoT to be a success, something needs to

be done

6

Problems
Time-to-market is often too short, to test device
sufficiently, thus upgrading a device’s firmware
becomes necessary to fix erroneous behaviour.
Problems with Firmware Upgrades
> An update gone wrong can brick the device
> On-site upgrade is not practical and will thus not be

done
> Remote update can be an attack vector to gain

control of the device
> A remote update can leak sensible information

Many devices have many capabilities to help
remedy these problems

7

Our Solution

A proposal for a secure Firmware upgrade over the air
(FOTA) which is as generic and lightweight as possible,
able to be used across many devices with very little
implementation overhead. We aim to be easy on the
device’s memory and on the hardware cost.
We do not
> use a TPM
> use an HSM or Secure Element
> use memory protection

8

Our Solution

We do

> tackle the classic problems of IT-Security:
authenticity, confidentiality and integrity

> offer a safety approach to prevent device bricking
> use an Atmel SAMR21-XPRO with Cortex-M0+

processor (256Kb flash, 32Kb RAM) as a reference
device

We do not
> protect you from attackers who can physically

tamper the device

9

Our Solution

We do
> tackle the classic problems of IT-Security:

authenticity, confidentiality and integrity

> offer a safety approach to prevent device bricking
> use an Atmel SAMR21-XPRO with Cortex-M0+

processor (256Kb flash, 32Kb RAM) as a reference
device

We do not
> protect you from attackers who can physically

tamper the device

10

Our Solution

We do
> tackle the classic problems of IT-Security:

authenticity, confidentiality and integrity
> offer a safety approach to prevent device bricking

> use an Atmel SAMR21-XPRO with Cortex-M0+
processor (256Kb flash, 32Kb RAM) as a reference
device

We do not
> protect you from attackers who can physically

tamper the device

11

Our Solution

We do
> tackle the classic problems of IT-Security:

authenticity, confidentiality and integrity
> offer a safety approach to prevent device bricking
> use an Atmel SAMR21-XPRO with Cortex-M0+

processor (256Kb flash, 32Kb RAM) as a reference
device

We do not
> protect you from attackers who can physically

tamper the device

12

Our Solution

We do
> tackle the classic problems of IT-Security:

authenticity, confidentiality and integrity
> offer a safety approach to prevent device bricking
> use an Atmel SAMR21-XPRO with Cortex-M0+

processor (256Kb flash, 32Kb RAM) as a reference
device

We do not

> protect you from attackers who can physically
tamper the device

13

Our Solution

We do
> tackle the classic problems of IT-Security:

authenticity, confidentiality and integrity
> offer a safety approach to prevent device bricking
> use an Atmel SAMR21-XPRO with Cortex-M0+

processor (256Kb flash, 32Kb RAM) as a reference
device

We do not
> protect you from attackers who can physically

tamper the device

14

Our Solution
Create a lightweight bootloader which handles the
whole update process and all necessary security
functions

> Applying an electronic signature or a MAC on the
update package to guarantee its integrity and
authenticity

> Encrypt the update package to ensure
confidentiality

(Optional)

> Achieve fault tolerance through a dedicated backup
area

(Optional)

> Make the approach configurable and thus more
adaptable to different scenarios and devices

15

Our Solution
Create a lightweight bootloader which handles the
whole update process and all necessary security
functions
> Applying an electronic signature or a MAC on the

update package to guarantee its integrity and
authenticity

> Encrypt the update package to ensure
confidentiality

(Optional)

> Achieve fault tolerance through a dedicated backup
area

(Optional)

> Make the approach configurable and thus more
adaptable to different scenarios and devices

16

Our Solution
Create a lightweight bootloader which handles the
whole update process and all necessary security
functions
> Applying an electronic signature or a MAC on the

update package to guarantee its integrity and
authenticity

> Encrypt the update package to ensure
confidentiality

(Optional)
> Achieve fault tolerance through a dedicated backup

area

(Optional)

> Make the approach configurable and thus more
adaptable to different scenarios and devices

17

Our Solution
Create a lightweight bootloader which handles the
whole update process and all necessary security
functions
> Applying an electronic signature or a MAC on the

update package to guarantee its integrity and
authenticity

> Encrypt the update package to ensure
confidentiality

(Optional)

> Achieve fault tolerance through a dedicated backup
area

(Optional)
> Make the approach configurable and thus more

adaptable to different scenarios and devices

18

Our Solution
Create a lightweight bootloader which handles the
whole update process and all necessary security
functions
> Applying an electronic signature or a MAC on the

update package to guarantee its integrity and
authenticity

> Encrypt the update package to ensure
confidentiality

(Optional)

> Achieve fault tolerance through a dedicated backup
area

(Optional)

> Make the approach configurable and thus more
adaptable to different scenarios and devices

19

Our Solution
Create a lightweight bootloader which handles the
whole update process and all necessary security
functions
> Applying an electronic signature or a MAC on the

update package to guarantee its integrity and
authenticity

> Encrypt the update package to ensure
confidentiality (Optional)

> Achieve fault tolerance through a dedicated backup
area (Optional)

> Make the approach configurable and thus more
adaptable to different scenarios and devices

20

The Bootloader

> Preinstalled upon device manufacturing
> Comes preinstalled with public and/or secret key(s)
> Manages a memory table holding all keys and

metadata of the installed firmware image(s)
> Makes the decision if an update package is to be

installed
> Makes the decision which firmware is to be booted

21

Device memory overview

BOOTLOADER

MEMORY TABLE

UPDATE AREA

FIRMWARE v1.1

FIRMWARE v1.0

1.0 SIG

SIG...Signatur
TM…..Transmission
TS…....Timestamp

1.1 SIG

0x0000DC00

0x00016800

1.0

1.1

0x0000DC00

0x00016800

22

Update process

INSTALLATION
NEW

FIRMWARE

OPERABILITY
SCAN

DECRYPTION

DELETE UPDATE
PACKAGE & SEND

ERROR MESSAGE TO
SERVER

RE-
TRANSMISSION

RECEIVING UPDATE
PACKAGE

INTEGRITY CHECK

TRANSMISSION
COUNT > 3

ENCRYPTION
ENABLED

VERSION
CONTROL

„UPDATE SUCCESSFUL“
MESSAGE TO SERVER

(& BACKUP)

„UPDATE FAILED“

TRANSMISSION
COUNT = 1

TRANSMISSION
COUNT ++OK

NOK

OK

YES

NO

NO

YES

OK

NOK

NOK

SECURITY
PACKAGE

Figure: Secure firmware update process on the client side
23

Protocols used

> ECDSA for the electronic signatures (well tested,
more lightweight than RSA)

> AES for encryption (fast, well implemented on small
devices, often even hardware support)

> HMAC or CMAC for package authentication, if public
key cryptography would use too much (flash)
memory

> LWM2M (CoAP based), 6LoWPAN and TFTP for
wireless communication

24

Open Questions

> Key rollover
> Management of the symmetric keys

Suggestions very welcome!

25

Open Questions

> Key rollover
> Management of the symmetric keys

Suggestions very welcome!

26

Goal

A full specification and working reference
implementation by the end of the year

27

Evaluations

In order to define the actual specifications for our
update process, a lot of cryptographic primitives had to
be evaluated, to see which algorithms are usable on
such low end hardware, and which are not.
Those evaluations were done using RIOT-OS.

28

Evaluations

We have measured runtime, memory consumption and
ROM requirements for the following:
> ECDSA key generation, signature creation,

signature verification (using micro-ecc)
> Ed25519 signature creation and verification
> Hash calculations using SHA-1 and SHA-2
> Symmetric cipher functions (AES and Twofish) in

various operation modes (CBC, CCM)
> Hashing the plain text of encrypted data

29

Results

The actual numbers are in the paper.

> The micro-ecc implementations of ECDSA is very
lightweight (especially when only verification is
needed) and perfectly usable for our purpose

> Ed25519 is supposed to be faster than ECDSA, but
the available implementations are not

30

Results

The actual numbers are in the paper.
> The micro-ecc implementations of ECDSA is very

lightweight (especially when only verification is
needed) and perfectly usable for our purpose

> Ed25519 is supposed to be faster than ECDSA, but
the available implementations are not

31

Results

The actual numbers are in the paper.
> The micro-ecc implementations of ECDSA is very

lightweight (especially when only verification is
needed) and perfectly usable for our purpose

> Ed25519 is supposed to be faster than ECDSA, but
the available implementations are not

32

Results

The actual numbers are in the paper.
> The micro-ecc implementations of ECDSA is very

lightweight (especially when only verification is
needed) and perfectly usable for our purpose

> Ed25519 is supposed to be faster than ECDSA, but
the available implementations are not

Signature verification with comparable bit-length: 500
ms versus 3916 ms.

33

Results

The actual numbers are in the paper.
> Verifying a signature of the plain text of encrypted

data is doable even with that limited amount of
RAM.

34

Results

The actual numbers are in the paper.
> Verifying a signature of the plain text of encrypted

data is doable even with that limited amount of
RAM.

Calculating the SHA-256 hash of the plaintext of a large
amount (128 kB) of encrypted data takes 1831 ms and
uses 3120 byte RAM.

35

Contributions

Some contributions to the open source world have been
created in the course:

> The micro-ecc package of RIOT-OS has been
updated

> Implementation of stronger curves for micro-ecc (to
be released)

> Streamlined the Hash Function interface of RIOT-OS
> Implemented the HWRNG in RIOT-OS for our

evaluation board
> Created a lightweight ASN.1 parser implementation

for embedded devices

36

Contributions

Some contributions to the open source world have been
created in the course:
> The micro-ecc package of RIOT-OS has been

updated

> Implementation of stronger curves for micro-ecc (to
be released)

> Streamlined the Hash Function interface of RIOT-OS
> Implemented the HWRNG in RIOT-OS for our

evaluation board
> Created a lightweight ASN.1 parser implementation

for embedded devices

37

Contributions

Some contributions to the open source world have been
created in the course:
> The micro-ecc package of RIOT-OS has been

updated
> Implementation of stronger curves for micro-ecc (to

be released)

> Streamlined the Hash Function interface of RIOT-OS
> Implemented the HWRNG in RIOT-OS for our

evaluation board
> Created a lightweight ASN.1 parser implementation

for embedded devices

38

Contributions

Some contributions to the open source world have been
created in the course:
> The micro-ecc package of RIOT-OS has been

updated
> Implementation of stronger curves for micro-ecc (to

be released)
> Streamlined the Hash Function interface of RIOT-OS

> Implemented the HWRNG in RIOT-OS for our
evaluation board

> Created a lightweight ASN.1 parser implementation
for embedded devices

39

Contributions

Some contributions to the open source world have been
created in the course:
> The micro-ecc package of RIOT-OS has been

updated
> Implementation of stronger curves for micro-ecc (to

be released)
> Streamlined the Hash Function interface of RIOT-OS
> Implemented the HWRNG in RIOT-OS for our

evaluation board

> Created a lightweight ASN.1 parser implementation
for embedded devices

40

Contributions

Some contributions to the open source world have been
created in the course:
> The micro-ecc package of RIOT-OS has been

updated
> Implementation of stronger curves for micro-ecc (to

be released)
> Streamlined the Hash Function interface of RIOT-OS
> Implemented the HWRNG in RIOT-OS for our

evaluation board
> Created a lightweight ASN.1 parser implementation

for embedded devices

41

Acknowledgements

This paper has been written as part of the research
project SecureIoTy

Academic partner

Industrial partners

Funding
Contact: Georg Simhandl (georg.simhandl@adaptivia.com)
We are looking for more industrial partners. If you are interested, please let us know.

42

THANK YOU

43

