
Usable Security for RIOT and the IoT
RIOT-Summit 2018, Amsterdam, NL

Olaf Bergmann, Stefanie Gerdes

2018-09-13

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 1 / 23

Communication in Constrained Environments

I Constrained Application Protocol (CoAP, RFC 7252)
I designed for special requirements of constrained

environments
I Similar to HTTP (RESTful architecture style)

I server has items of interest
I client requests representation of current state

I Datagram Transport Layer Security (DTLS) binding
I How can users keep the control over their data and

devices? → Authorization

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 2 / 23

Building Blocks

RIOT already has the all tools you need:

I CoAP implementations
I Data representation libraries
I Crypto tools
I DTLS implementations

How to use these for securing your IoT application?

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 3 / 23

Building Blocks

RIOT already has the all tools you need:

I CoAP implementations
I Data representation libraries
I Crypto tools
I DTLS implementations

How to use these for securing your IoT application?

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 3 / 23

Option 1: sock_secure + tlsman (Raul Fuentes)

PRs #7397 and #7649

I basic idea: provide API based on existing socket primitives
I secure_sock_connect(),

secure_sock_send(), . . .
I (D)TLS implementation agnostic API

I tlsman_create_channel(),
tlsman_send_data_app(),
tlsman_close_channel(), . . .

I can work with nanocoap and gcoap

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 4 / 23

https://github.com/RIOT-OS/RIOT/issues/7397
https://github.com/RIOT-OS/RIOT/issues/7649

Example: sock_secure server
sock_secure_session_t secure_sess = { .flag=0, .cb=NULL };
secure_sess.flag = TLSMAN_FLAG_STACK_DTLS | TLSMAN_FLAG_SIDE_SERVER;
uint16_t ciphers[] = SECURE_CIPHER_LIST;
sock_secure_load_stack(&secure_sess, ciphers, sizeof(ciphers));

sock_udp_t sock;
sock_udp_ep_t local = ...;
sock_udp_ep_t remote = ...;

sock_udp_create(&sock, &local, NULL, 0);
ssize_t res = sock_secure_initialized(&secure_sess, cb, (void *)&sock,

(sock_secure_ep_t*)&local,
(sock_secure_ep_t *)&remote);

while(sock_secure_read(&secure_sess)) { ... }

sock_secure_release(&secure_sess);
sock_udp_close(&sock);

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 5 / 23

Option 2: gcoap + sock_tdsec (Ken Bannister)
https://github.com/kb2ma/RIOT/tree/sock/tdsec

I basic idea: simplified API for secure sockets with tinydtls
I tdsec_create(),

tdsec_connect(),
tdsec_read(),
tdsec_send()

I hidden from application developer

size_t gcoap_req_send2(...)
{

...
#ifdef MODULE_SOCK_TDSEC

ssize_t res = tdsec_connect(&_tdsec, remote);
if (res >= 0) {

res = tdsec_send(&_tdsec, buf, len, remote);
}
... Olaf Bergmann, Stefanie Gerdes:

Usable Security for RIOT and the IoT 6 / 23

https://github.com/kb2ma/RIOT/tree/sock/tdsec

Current Limitations

I credentials defined at build-time
(tdsec_params.h, dtls_keys.h)
tdsec_psk_params_t tdsec_psk_params[] = {

{ .client_id = "homer", .key = "secretPSK", },
{ .client_id = "marge", .key = "anotherPSK", }

};

I need to know every potential communication peer in
advance

I no multiplexing of security associations, applications are not
aware of underlying transport session

I no dynamic authorization (cleartext vs. protected resources)

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 7 / 23

Our Goal

I A Client (C) wants to access an item of interest, a web
resource (R), on a Server (S).

I A priori, C and S do not know each other, have no security
association. They might belong to different owners.

I C and / or S are located on a constrained node.

Request
Response

SC

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 8 / 23

Authorization Protocol Design

I Secure exchange of authorization information
I Establish secure channel between constrained nodes

(e.g., DTLS but could be “object security” as well)
I Use only symmetric key cryptography on constrained nodes
I RESTful architectural style
I Relieve constrained nodes from managing

authentication and authorization

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 9 / 23

Authenticated Authorization

I Determine if the owner of an item of interest allows an entity
to access this item as requested.

I Authentication: Verify that an entity has certain attributes
(cf. RFC4949).

I Authorization: Grant permission to an entity to access an
item of interest.

I Authenticated Authorization: Use the verified attributes
to determine if an entity is authorized.

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 10 / 23

Tasks for Authenticated Authorization
I Beforehand: Provide information for Authenticated

Authorization
I Make attribute-verifier-binding verifiable: Validate that an

entity actually has the attributes it claims to have (e.g. that it
belongs to a certain user) and bind the attributes to a verifier
(e.g. a key) using the endorsement info.

I Define access policies (entity with attribute x has this set of
permissions).

I At the time of the request: Check access request against
the provided information
I Check the verifier a received access request is bound to.
I Check the verifier-attribute binding.
I Determine the authorization using the attributes.
I Enforce the authorization.

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 11 / 23

Constrained Level Actors

I C and S are constrained level actors: able to operate on a
constrained node.

I C attempts to access a resource.
I S hosts one or more resources.
I Tasks:

I Determine if sender is authorized to access as requested.
I Enforce the authorization

Constrained Level
Secure

Communication
SC

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 12 / 23

Principal Level Actors
I C and S are under control of principals in the physical world.
I COP is in charge of C: specifies security policies, e.g. with

whom S is allowed to communicate.
I SOP is in charge of S: specifies security policies,

e.g. authorization policies.

Overs. Principal Level:
Individuals / Companies

Constrained Level

in charge ofin charge of

requests resource
provides resource

SC

SOPCOP

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 13 / 23

Less-Constrained Level
I CAM and SAM act in behalf of their respective owner.
I Tasks:

I Obtain the security objectives from their owner.
I Authenticate the other party.
I Provide simplified authorization rules and means for

authentication to their constrained devices.

Overs. Principal Level:
Individuals / Companies

Less-Constrained Level

Constrained Level

authentication and
authorization

requests resource
provides resource

in charge of in charge of

authenticated
authorization

support

SC

authenticated
authorization
support

SOPCOP

SAMCAM

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 14 / 23

Security Domains
I A priori, C and S do not know each other, might belong to

different security domains

Constrained Level

authentication and
authorization

requests resource
provides resource

SC

authenticated
authorization
support

SOPCOP

SAMCAM

in charge of

Less-Constrained Level

authenticated
authorization

support

Client Owner's
Security Domain

Overs. Principal Level:
Individuals / Companies

Server Owner's
Security Domain

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 15 / 23

Initial Trust Relationships

SC

Existing Trust
Relationships

SAMCAM

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 16 / 23

Protocol Overview

SAMCAM
Security Association Security Association

[Unauth. Res. Req]

[SAM Information]

Access Request

Mutual Authenticated Authorization

Ticket Request

Ticket Grant

Ticket Transfer

Mut. Authn. Authz

Auth. Res. Req

Ticket Transmission

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 17 / 23

Access Ticket

Access Request

Face +
Server Info

Face

Server Information
Security Association

use Ticket Face
for authorizationCoAP traffic

use Client Info
for authorization

Face SAMCAM

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 18 / 23

Access Ticket

verifier (session key)
[client authorization info,
 nonce]
[lifetime]

Access Request

Face +
Server Info

Face:

Server Information

[server authorization info]
nonce
[lifetime]

Security Association

use Ticket Face
for authorizationCoAP traffic

use Client Info
for authorization

Face SAMCAM

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 19 / 23

Summary: The DCAF Protocol

I Less-contrained nodes do the hard work
(possibly even public-key crypto)

I Can utilize DTLS to transmit authorization info
I Authenticate origin client by its access ticket:

I S and SAM share at least one session key
I SAM creates Ticket Face + Verifier, tells CAM, C
I C initiates DTLS handshake with S
I S derives PSK from Ticket Face

I Knowledge of Verifier authenticates C to S!
I Knowledge of PSK authenticates S to C!
I Authorization information valid for the entire session
I Verifier ensures Face’s integrity

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 20 / 23

Example Implementation Using libcoap 1/2

Initialization

dcaf_config_t config = { .am_uri = "coaps://am.dcaf.science:7744" };
dcaf_context_t *dcaf = dcaf_new_context(&config);
coap_startup();

/* set credentials for talking to our authorization manager */
coap_context_set_psk(dcaf_get_coap_context(dcaf)), 0),

"s.constrained.space", key, key_length);

while (true) { coap_run_once(...); }

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 21 / 23

Example Implementation Using libcoap 2/2
Request Handler

void handle_request(...)
{

...
if (!dcaf_is_authorized(session, request)) {
dcaf_result_t res;
res = dcaf_set_sam_information(session, DCAF_MEDIATYPE_DCAF_CBOR,

response);
return;

}

... handle authorized request ...
}

Note: Ideally, this would happen in the {nano,micro,g,lib}coap core implementation.

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 22 / 23

Conclusion

I Observations
I Usable security requires simple but effective APIs
I Internet of Things demands multi-domain authorization
I complex authentication and authorization tasks can be

delegated
I Real-world applications often need to send subsequent

messages over the same session

I RIOT topics
I Finish DTLS/Sock/CoAP integration
I Add DCAF for key distribution

Olaf Bergmann, Stefanie Gerdes:
Usable Security for RIOT and the IoT 23 / 23

