
TLS 1.3 and RIOT-OS

AMSTERDAM - 13/09/2018

Slide 1 / 33 © Copyright 2018 wolfSSL

+

1. What is SSL

2. What’s new in TLS 1.3

3. RIOT-OS wolfSSL pkg design and implementation

© Copyright 2018 wolfSSLSlide 2 / 33

We’re going to talk about:

© Copyright 2018 wolfSSLSlide 5 / 33

What is SSL

And why it is important for the IoT

What is SSL?

• Enables security in network communications, defined as:

Confidentiality + Prevent eavesdropping

Authentication + Prevent impersonation

Integrity + Prevent modification

Slide 6 / 33 © Copyright 2018 wolfSSL

What is SSL?

• Provides end-to-end security

– Using the same standard protocols and ciphers as the remote
endpoint

– Enabling built-in security for the most popular communication
protocols (https, ssh), even IoT specific (mqtts)

– Not relying on security features from third party technology,
like data link for the first leg of the communication path

Slide 6 / 33 © Copyright 2018 wolfSSL

Security in IoT

• It’s no longer a myth

– Most connected embedded systems require secure
communication

• Easy interaction with the existing IT infrastructure and cloud servers

– Same families of protocols...

Slide 6 / 33 © Copyright 2018 wolfSSL

Security in IoT

...different technologies, so different implementation approach:

– Resources required by the SSL implementation (RAM, flash, …)

– Computational power/time to execute encryption operations

– Integration with communication libraries (TCP/IP or other
communication stacks)

Slide 6 / 33 © Copyright 2018 wolfSSL

wolfSSL
• Designed for embedded systems

– Small footprint, limited amount of resource required

– Built-in hardware acceleration and assembly optimization

– Modular to allow scalability to the single algorithm/feature

• Portable and easy to integrate

– Callback-based API for bare metal and OS integration

– Built-in support for many OS/environment/platforms

• Mature codebase

• Professional support

• Fast release cycle

• GPL

Slide 6 / 33 © Copyright 2018 wolfSSL

© Copyright 2018 wolfSSLSlide 5 / 33

What is new in TLS 1.3

The new standard protocol for secure communication

Protocols

• Timeline of the protocols standard

SSL 2.0
SSL 3.0

TLS 1.0

TLS 1.1
TLS 1.2
DTLS 1.2

TLS 1.3

1995
1996

1999

2006
2008
2012

08/2018

DTLS 1.0

Notes:

• SSL 2.0/3.0 are insecure
• SSL = “Secure Sockets Layer”
• TLS = “Transport Layer Security”
• DTLS = “Datagram TLS”

Slide 21 / 33 © Copyright 2018 wolfSSL

• Faster handshake (1-RTT/0-RTT)

• Full session encryption

• New cipher suites

• Deprecated vulnerable ciphers and algorithms

• Removed obsolete/insecure features

TLS 1.3: major improvements

Slide 16 / 33 © Copyright 2018 wolfSSL

TLS Handshake now requires only one RTT instead of two

Client can start sending data immediately after the first reply
from the server

Less RTT == faster handshake, less traffic, less power used

TLS 1.3: improved handshake

Slide 16 / 33 © Copyright 2018 wolfSSL

Classic TLS v1.1/v1.2 handshake

Slide 16 / 33 © Copyright 2018 wolfSSL

Client Server

Hello!

Key exchange,
Change cipher spec,

Finished.

{encrypted data} {encrypted data}

Hello!
Here is my certificate.

Change cipher spec,
Finished.

TLS 1.3 handshake

Slide 16 / 33 © Copyright 2018 wolfSSL

Client Server

Hello!
Key share

Finished+
{encrypted data}

{encrypted data}

{encrypted data}

Hello!
Key share,
Certificate,
Cert verify,
Finished.

• TLS uses a variety of encryption algorithms to secure data

Hashing Functions

Block and Stream Ciphers

Public Key Options

MD4, MD5, SHA …

DES, 3DES, AES,
ARC4 …

RSA, DSS …

CIPHER SUITE

Encryption algorithms

Slide 15 / 33 © Copyright 2018 wolfSSL

Ciphers

• Does the configuration support the needed cipher suites?

Block / StreamPublic Key Hash

RSA, DSS, DH,
NTRU
…

DES, 3DES,
AES, ARC4,
RABBIT, HC-
128
…

MD2, MD4,
MD5, SHA-
128, SHA-256,
RIPEMD
…

TLS_RSA_WITH_AES_128_CBC_SHAEx:

Slide 22 / 33 © Copyright 2018 wolfSSL

• A common CIPHER SUITE is negotiated during the initial handshake:

SSL_RSA_WITH_DES_CBC_SHA

SSL_DHE_RSA_WITH_DES_CBC_SHA

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_DHE_DSS_WITH_AES_128_CBC_SHA

TLS_DHE_RSA_WITH_AES_256_CBC_SHA

TLS13-AES128-GCM-SHA256

TLS13-AES256-GCM-SHA384

TLS13-CHACHA20-POLY1305-SHA256

TLS13-AES128-CCM-SHA256

TLS13-AES128-CCM-8-SHA256

TLS 1.3: new cipher suites

Slide 16 / 33 © Copyright 2018 wolfSSL

• The following algorithms are obsolete and should not be used:

– RC4

– SHA1

– MD5

– SHA224

TLS 1.3: abandoned algorithms

Slide 16 / 33 © Copyright 2018 wolfSSL

• The following features are obsolete and are no longer part of TLS:

– Compression

– Renegotiation

– All non-AEAD ciphers

– Non-PFS Key exchange (static RSA and static DH)

– Custom DHE groups

– Change Cipher Spec

– Fallback to old SSL standard during negotiation

TLS 1.3: removed features

Slide 16 / 33 © Copyright 2018 wolfSSL

• The following algorithms are now part of TLS:

– ChaCha20 symmetric key stream cipher

– Poly1305 message authentication code

– Ed25519 and Ed448 digital signature algorithms

– curve25519 and x448 key-exchange protocols

TLS 1.3: Added algorithms

Slide 16 / 33 © Copyright 2018 wolfSSL

• Older TLS version allowed the client to resume a previously
interrupted session

– Server must look up the session id from its cache

– Multiple servers should share the same cache

• TLS 1.3 uses session tickets

– The ticket contains the server state for the session

– The ticket is stored by the client and used for resumption, but it
can only be decrypted and used by the server to resume the
session

– Stateless servers == less resources

TLS 1.3: Session resumption

Slide 16 / 33 © Copyright 2018 wolfSSL

© Copyright 2018 wolfSSLSlide 5 / 33

The Riot-OS wolfSSL pkg

Design and implementation

• PR #6197: wolfSSL alpha examples

– Self-contained application to show possible integration

• PR #7348: wolfSSL first pkg with TLS examples

– Integration via Berkeley socket interface

– Requires traditional TCP/IP stack (e.g. LwIP)

– TLS client/server (TCP) examples provided

First approach: alpha version

Slide 16 / 33 © Copyright 2018 wolfSSL

First approach: alpha version

Slide 16 / 33 © Copyright 2018 wolfSSL

IEEE 802.3 or IEEE 802.11

IPv6

ICMP6

TCP UDP

POSIX socket API

wolfSSL

TLS Application

Traditional
TCP/IP stack

• PR #9894: wolfSSL pkg with sock_udp API integration

– Built-in callbacks in wolfSSL

– DTLS 1.2 client/server demo (tested on native)

– Requires gnrc_sock_udp

– Application API: sock_tls_t provided by the module sock_tls

Second version: GNRC support and DTLS
demo

Slide 16 / 33 © Copyright 2018 wolfSSL

Second version: GNRC support and DTLS
demo

Slide 16 / 33 © Copyright 2018 wolfSSL

6LoWPAN

IPv6/RPL

ICMP6

UDP

sock_udp

wolfSSL

DTLS Application

GNRC
UDP/IP stack

sock_tls

IEEE 802.15.4

• sock_tls

– Front-end to create TLS/DTLS sessions on top of sock_udp

– Type: sock_tls_t
● Groups together wolfSSL context, session, udp sock and

endpoint address for DTLS session
● Used as context by wolfSSL callbacks

• System integration:

– Uses random_uint32() as random source

Second version: implementation details

Slide 16 / 33 © Copyright 2018 wolfSSL

• Status of native TCP support?

– TLS over gnrc_tcp ?

– Plans for a generic sock_tcp ?

– HTTPS/wolfMQTTS demos

– wolfSSH

• Feedback is appreciated. Let’s work together on the best solution!

Next steps

Slide 16 / 33 © Copyright 2018 wolfSSL

Thanks!
www.wolfssl.com

daniele@wolfssl.com
info@wolfssl.com

© Copyright 2018 wolfSSLSlide 33 / 33

+

	Slide 1
	Slide 2
	What is SSL?_clipboard0
	What is SSL?
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	1: Protocols
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	SSL: Encryption
	2: Ciphers
	SSL: Encryption_clipboard0
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

