
Seamless Power Management on IoT Devices —
Lessons from an HVAC Use Case using RIOT

Jürgen Fitschen - SSV So�ware Systems GmbH

1 . 1

Seamless Power Management on IoT Devices • Jürgen Fitschen • RIOT Summit 2020

Who am I?
Jürgen Fitschen (on GitHub)

Systems Engineer at , Germany
Using RIOT since 2018

jue89
SSV So�ware Systems

What we'll cover ...
Why does good power management matter?

How does it work?
It's all about timers!

1 . 2

https://github.com/jue89
https://ssv-embedded.de/

Seamless Power Management on IoT Devices • Jürgen Fitschen • RIOT Summit 2020

Why does Good Power Management Matter to us?

2 . 1

Seamless Power Management on IoT Devices • Jürgen Fitschen • RIOT Summit 2020

Retrofit Systems are our Passion.
Goal: enhance efficiency and value of existing systems and environments
Sensors and actuators must be deployed within already existing systems
Some retrofit systems require 100+ sensors

⮩ Battery-powered sensors and actuators are required!

2 . 2

Seamless Power Management on IoT Devices • Jürgen Fitschen • RIOT Summit 2020

Example Retrofit Setup: Battery-powered Sensors

Task: Send notifications when the windows should be opened

CO2CO2 CO2CO2

CO2CO2 CO2CO2

CO2-Sensor

Gateway

Measure CO2 contentration in every room
Send the sensor reading to gateway
Notify occupier upon high sensor readings via e-mail

2 . 3

Seamless Power Management on IoT Devices • Jürgen Fitschen • RIOT Summit 2020

The CO2 Sensor's Application Sequence

Phase Duration Current Charge
Measure 100 ms 1,000 μA 0.1 mC

TX 50 ms 13,500 μA 0.7 mC

RX 200 ms 8,200 μA 1.6 mC

Sleep 299,650 ms 10 μA 3.0 mC

Sum: 300,000 ms 5.4 mC

Battery Charge: [1] 2,400 mAh = 8,640,000 mC

Battery Self-discharge Current: [2] 1.9 μA

Number of Cycles: 1,444,454
Livetime: 13.74 years

0 5min

Current

Time

M

12mA

T R S

⮩ Reduce power consumption during sleep phase!

2 . 4

Seamless Power Management on IoT Devices • Jürgen Fitschen • RIOT Summit 2020

How does Power Management Work?

3 . 1

Seamless Power Management on IoT Devices • Jürgen Fitschen • RIOT Summit 2020

The Internals of the Microcontroller SAM R30[]

SLEEPCFG State STANDBY

RF Network Interface State SLEEP

Current Consumption 2.2μA

3

RAM

CPU

48MHz PLL

High Speed
Timer

Low Speed
Timer

RF Network
Interface

0.0μARETENTION

1.5μARETENTION

0.0μARETENTION

0.3μAACTIVE

0.1μARETENTION

0.0μAOFF

32kHz XTAL
0.3μAACTIVE

16MHz XTAL
0.0μAOFF

Clock Sources CPU+Peripherals

⮩ Set the SLEEPCFG register to "STANDBY" and
the RF Network Interface to "SLEEP" during sleep phase!

3 . 2

Seamless Power Management on IoT Devices • Jürgen Fitschen • RIOT Summit 2020

RIOT has a Driver for Power Management

Power Mode Blocker Lowest Mode?
IDLE ❮

STANDBY pm_unblock(STANDBY) 1 pm_block(STANDBY)

BACKUP pm_unblock(BACKUP) 1 pm_block(BACKUP)

pm_layered keeps track of which power mode can be entered
The idle thread enters the lowest mode
Someone must tell pm_layered which modes are allowed

⮩ For a seamless user experience, drivers must interact with pm_layered

3 . 3

Seamless Power Management on IoT Devices • Jürgen Fitschen • RIOT Summit 2020

It's all about Timers!

4 . 1

Seamless Power Management on IoT Devices • Jürgen Fitschen • RIOT Summit 2020

RIOT's Current Default Timer System: xtimer
#include "xtimer.h"
#include "timex.h"

static void callback (void * arg) {
 puts((char*) arg);
}

int main (void) {
 /* 1. Run a callback after 3s */
 static xtimer_t cb_timer = {.callback = callback, .arg = "Hello World"};
 xtimer_set(&cb_timer, 3 * US_PER_SEC);

 /* 2. Sleep the current thread for 60s */
 xtimer_sleep(60);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

static void callback (void * arg) {
 puts((char*) arg);
}

 /* 1. Run a callback after 3s */
 static xtimer_t cb_timer = {.callback = callback, .arg = "Hello World"};
 xtimer_set(&cb_timer, 3 * US_PER_SEC);

#include "xtimer.h"1
#include "timex.h"2
 3

4
5
6

 7
int main (void) {8

9
10
11

 12
 /* 2. Sleep the current thread for 60s */13
 xtimer_sleep(60);14
}15

 /* 2. Sleep the current thread for 60s */
 xtimer_sleep(60);

#include "xtimer.h"1
#include "timex.h"2
 3
static void callback (void * arg) {4
 puts((char*) arg);5
}6
 7
int main (void) {8
 /* 1. Run a callback after 3s */9
 static xtimer_t cb_timer = {.callback = callback, .arg = "Hello World"};10
 xtimer_set(&cb_timer, 3 * US_PER_SEC);11
 12

13
14

}15

#include "xtimer.h"
#include "timex.h"

static void callback (void * arg) {
 puts((char*) arg);
}

int main (void) {
 /* 1. Run a callback after 3s */
 static xtimer_t cb_timer = {.callback = callback, .arg = "Hello World"};
 xtimer_set(&cb_timer, 3 * US_PER_SEC);

 /* 2. Sleep the current thread for 60s */
 xtimer_sleep(60);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

High Speed
Timer

xtimer

Clock Source Driver Instance

xtimer_t

xtimer_t

xtimer_t

Driver Users

⮩ xtimer requires the High Speed Timer to run all the time

⮩ STANDBY mode must not be entered at any time

4 . 2

Seamless Power Management on IoT Devices • Jürgen Fitschen • RIOT Summit 2020

There's an Alternative for the Rescue: ztimer
#include "ztimer.h"
#include "timex.h"

static void callback (void * arg) {
 puts((char*) arg);
}

int main (void) {
 /* 1. Run a callback after 3s */
 static ztimer_t cb_timer = {.callback = callback, .arg = "Hello World"};
 ztimer_set(ZTIMER_USEC, &cb_timer, 3 * US_PER_SEC);

 /* 2. Sleep the current thread for 60s */
 ztimer_sleep(ZTIMER_MSEC, 60 * MS_PER_SEC);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

App's Makefile:

USEMODULE += ztimer ztimer_usec ztimer_msec

App's Makefile:

samr30-based-board/include/board.h:

USEMODULE += ztimer ztimer_usec ztimer_msec ztimer_periph_rtt
USEMODULE += pm_layered

Make ZTIMER_USEC block/unblock STANDBY mode
#define CONFIG_ZTIMER_USEC_REQUIRED_PM_MODE PM_SLEEPCFG_SLEEPMOD
Only block BACKUP mode on startup
#define PM_BLOCKER_INITIAL 0x0001

⮩ ztimer unblocks STANDBY mode if no ztimer_t requires ZTIMER_USEC to run

4 . 3

Seamless Power Management on IoT Devices • Jürgen Fitschen • RIOT Summit 2020

xtimer & ztimer can be Friends and Coexist!
USEMODULE += ztimer ztimer_usec xtimer xtimer_on_ztimer evtimer

High Speed
Timer

ZTIMER_USEC

ztimer_t

ztimer_t

ztimer_t

xtimer

ztimer_t

ztimer_t

ztimer_t

ztimer_t

ztimer_t

ztimer_t

xtimer_t

xtimer_t

xtimer_t

evtimer

ztimer_t

ztimer_t

ztimer_t

evtimer_t

evtimer_t

evtimer_t

⮩ xtimer_on_ztimer blocks STANDBY mode all the time

USEMODULE += ztimer ztimer_usec ztimer_msec ztimer_periph_rtt ztimer_xtimer_compat evtimer evtimer_on_ztimer
evtimer_on_ztimer hasn't been merged, yet. See Pull Request #13661

High Speed
Timer

ZTIMER_USEC

ztimer_t

ztimer_t

ztimer_t

xtimer_t

evtimer

ztimer_t

ztimer_t

ztimer_t

evtimer_t

evtimer_t

evtimer_t

ZTIMER_MSEC

ztimer_t

ztimer_t

ztimer_t

Low Speed
Timer

xtimer_t

⮩ ztimer_xtimer_compat doesn't implement xtimer_*64() methods

4 . 4

https://github.com/RIOT-OS/RIOT/pull/13661

Seamless Power Management on IoT Devices • Jürgen Fitschen • RIOT Summit 2020

RIOT & Power Management: Status Quo?

5 . 1

Seamless Power Management on IoT Devices • Jürgen Fitschen • RIOT Summit 2020

Conclusion
RIOT has all important parts for PM inside ...

... but by default they aren't configured for reasonable power saving.

RIOT has three different timer systems ...

... but the RIOT Developer Memo could lead to one standard system.
(cf.)#12970

RIOT is heading in the right direction for seamless power management!

5 . 2

https://github.com/RIOT-OS/RIOT/pull/12970

Seamless Power Management on IoT Devices • Jürgen Fitschen • RIOT Summit 2020

References
1.
2.

3.

Tadiran Batteries GmbH - Datasheet: SL-860
Dittrich, Menachem, Yamin, Adamas - Lithiumbatterien für
Funksensornetzwerke
Microchip Technology Inc. - SAM R30 Microcontroller

5 . 3

https://tadiranbatteries.de/pdf/lithium-thionyl-chloride-batteries/SL-860.pdf
https://tadiranbatteries.de/pdf/anwendungen/lithiumbatterien-fuer-funksensornetzwerke.pdf
https://www.microchip.com/design-centers/wireless-connectivity/embedded-wireless/802-15-4/hardware/sam-r30

