POST-QUANTUM CRYPTO: THE EMBEDDED CHALLENGE

Joost Renes SEPTEMBER 2021

SECURE CONNECTIONS FOR A SMARTER WORLD

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2021 NXP B.V.

PUBLIC

1

CONTEMPORARY CRYPTOGRAPHY E.G. TLS-ECDHE-RSA-AES128-GCM-SHA256

PUBLIC 2

LONG TERM STANDARDS (2022/2024) - NIST (ROUND 3, JULY 2020)

September 16, 2016	Feedback on call for proposals		
Fall 2016	Formal call for proposals	Information Technology Laboratory COMPUTER SECURITY RESOURCE CENTER	
November 2017	Deadline for submissions		
Early 2018	Workshop – submitters' presentations	PROJECTS	
3-5 years	Analysis phase Jan 2019: Round 2 July 2020: Round 3 announced 2021/2022: Winners	Post-Quantum Cryptography PQC f y Project Overview	
2 years later (2022/2024)	Draft standards ready	NIST has initiated a process to solicit, evaluate, and standardize one or more quantum-resistant public-key cryptographic algorithms. Full details can be found in the <u>Post-Quantum Cryptography Standardization</u> page.	

NIST update summer 2021: Winners will be announced by the end of <u>this</u> year

PUBLIC

5

LONG TERM STANDARDS (2022/2024)- NIST (ROUND 3, JULY 2020)

EMBEDDED USE CASES

Digital signatures (verification)

Secure boot Mobile. Firmware integrity

Over-the-air updates Automotive. Firmware authentication, smart car access

Key-Exchange

Secure element communication Industrial & IoT. Communication within IoT devices

Trust provisioning Industrial & IoT. Communication by IoT devices

PUBLIC 7

CLASSIC VS LATTICES IN PRACTICE (1/2)

- KEM finalists example excluding Classic McEliece (public key sizes range from 255 KiB to 1,326 KiB)
- Numbers from pqm4 library on Cortex-M4 [A]
- X25519 numbers from [B]

Note: Cortex-M4 is high-end for many embedded applications

- [A] Kannwischer, Rijneveld, Schwabe, Stoffelen. pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4. PQC standardization Conference, 2019.
- [B] Fujii, Aranha: Curve25519 for the Cortex-M4 and beyond. LatinCrypt 2017.

CLASSIC VS LATTICES IN PRACTICE (2/2)

- This ignores RAM / flash memory for key material
- Typical max. stack requirements:
 1k, 2k, 4k bytes → serious challenge

REUSING EXISTING COPROCESSORS

Grundzüge einer arithmetischen Theorie der algebraischen Grössen.

(Von L. Kronecker.)

(Abdruck einer Festschrift zu Herrn E. E. Kummers Doctor-Jubiläum, 10. September 1881.)

- Idea [A]: Re-use contemporary coprocessors
- · Can do better: Combine symbolic NTTs with Kronecker substitution in a smart way
- Reduces number of operations required on the coprocessor

[A] Albrecht, Hanser, Hoeller, Pöppelmann, Virdia, Wallner: Implementing RLWE-based schemes using an RSA co-processor. TCHES 2019

[B] Harvey. Faster polynomial multiplication via multipoint Kronecker substitution. J. Sym. Comp. 2009.

PUBLIC 10

[[]C] Bos, Renes and Vredendaal: Polynomial Multiplication with Contemporary Co-Processors: Beyond Kronecker, Schönhage-Strassen & Nussbaumer. USENIX 2022

STANDARDS - SHORT TERM (2020/2021) STATEFUL HASH-BASED SIGNATURE SCHEMES: XMSS

Internet Research Task Force (IRTF) Request for Comments: 8391 Category: Informational ISSN: 2070-1721 A. Huelsing TU Eindhoven D. Butin TU Darmstadt S. Gazdag genua GmbH J. Rijneveld Radboud University A. Mohaisen University of Central Florida May 2018

XMSS: eXtended Merkle Signature Scheme

XMSS signatures RFC 8391 (2018) NIST SP 800-208 (2020) Support from industry and government (e.g., BSI)

Not for all use-cases \rightarrow need to keep a state Main operation: thousands of hashes per signature generation / verification **NIST Special Publication 800-208**

Recommendation for Stateful Hash-Based Signature Schemes

PUBLIC 11

USE-CASE: OVER-THE-AIR UPDATES

PUBLIC 12

FASTER SIGNATURE VERIFICATION

Use / extend trade-off technique from [A] New proof of security New statistical analysis of the speed-up provided Fully compatible with the standard Uses hash-precomputation from [B]

Implementation	Signature Verification (10 ⁶ cycles)	Signature generation (seconds)
Ref	13.85	< 0.01
New (t=10)	7.87	0.04
New (t=27)	6.56	60

- [A] Perin, Zambonin, Martins, Custódio, Martina: Tuning the Winternitz hashbased digital signature scheme. IEEE ISCC 2018.
- [B] Campos, Kohlstadt, Reith, Stöttinger: LMS vs XMSS: Comparison of Stateful Hash-Based Signature Schemes on ARM Cortex-M4. AFRICACRYPT 2020
- [C] Bos, Hülsing, Renes, van Vredendaal: Rapidly Verifiable XMSS Signatures. TCHES 2021

PUBLIC 13

CONCLUSIONS

- Irrelevant if the quantum threat is real or not
 → Post-quantum crypto support is already being requested
- Standards are coming
- We didn't even talk about hardened implementations

Short term (2020) Stateful-hash signature schemes

Long term (2022/2024) NIST standards \rightarrow KEM, digital signatures Possibly multiple winners per category

PUBLIC 14

SECURE CONNECTIONS FOR A SMARTER WORLD

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2021 NXP B.V.