Femto-Containers

Lightweight DevOps-style Virtual Machines
on RIOT

Koen Zandberg

e — - - T RIOT Summit 2021

Overview

* How to maintain your deployment
* Virtual Machine Solutions

* The Linux solution: eBPF

* Femto-Containers

* Example: thread counter

Limitations and Conclusion

How to maintain your deployment?

* Deploying IoT nodes at scale challenging.

 How about maintaining them in the field?

Current Issues

One of the devices in the field shows
odd behaviour, can we debug this?

A third party wants to run code
on our devices.

A customer needs modified behaviour on
the deployed nodes.

Categories of Solutions

* Traditional solution: firmware updates
- Simple, but has downsides
- Maintaining and deploying another firmware version is costly

 Alternative solutions? Modular updates
— Dynamic linking
- Virtual Machines

Overview

* How to maintain your deployment
* Virtual Machine Solutions

* The Linux solution: eBPF

* Femto-Containers

* Example: thread counter

Limitations and Conclusion

Virtual Machine Solutions
* Python

AN

» Javascript
* WebAssembly
* MicroEJ

* (And others)

Virtual Machine Solutions

Downsides: bulky to add for simple applications [1]

Hosting engine requirements Firmware flash distribution

140
120
5

m ROM (KiB)
I ® RAM (KiB)

WASM3 JerryScript Micropython

Measured on the nRF52840dk, Hosting engine only (RIOT 2021.4 release)

m Kernel
m Network
80 OTA Update
60 B Micropython
B Crypto

40

20

0

[1]1 K. Zandberg, E. Baccelli. Femto-Containers: DevOps on Microcontrollers with Lightweight Virtualization & Isolation for IoT Software Modules. ArXiv, June 2021.

Sneak Peek

 Femto-containers:
— Much smaller VMs!
- Based on eBPF
- Hosting engine:
« 4.7 KiB ROM
* 664 B of RAM

140

120

100

80

60

40

20

B ROM (KiB)
= RAM (KiB)
-
> & o >
> N &° &
g S R N\
2 & P
\ 6\\0'
QQJ

Measured [1] on the nRF52840dk (RIOT 2021.4 release)

[1]1 K. Zandberg, E. Baccelli. Femto-Containers: DevOps on Microcontrollers with Lightweight Virtualization & Isolation for IoT Software Modules. ArXiv, June 2021.

Overview

* How to maintain your deployment
* Virtual Machine Solutions

* The Linux solution: eBPF

* Femto-Containers

* Example: thread counter

Limitations and Conclusion

The Linux solution: eBPF

Event-driven in-kernel
sandbox:

- Tracing
- Profiling
— Monitoring

- Network Protocol
parsers

11

The Linux solution: eBPF

e In-kernel Virtual Machine:

DDDDDDDDD

- 64 bit RISC architecture
- Register based

- 512 byte stack

* Allows for verification of
loaded applications:

— Application must halt

SSSSS

12

Overview

* How to maintain your deployment
* Virtual Machine Solutions

* The Linux solution: eBPF

* Femto-Containers

* Example: thread counter

Limitations and Conclusion

Femto-Containers

e Simple virtual machine
* Hardware independent
* Short-lived, Event driven

* Integration with RIOT
* Based on Linux eBPF
* Minimal footprint

14

Femto-Containers

Why eBPF?

v 512 Byte stack

v Limited instruction set
v Secure by design

x 64 bit architecture

15

Femto-Containers: Isolation

e Sandboxed from the
host

- Pre-flight checks
- Memory access guards

Instruction ——» Instruction Other Continue
Decode In struction
Read/Write Memory
Acces Lists Access —>» Abort

16

Femto-Containers: Events

Event triggered:

- Network
- USB
- System events

- Timers

Adding hooks Is cheap

Femto-Containers: OS Interaction

* Context and return value
- Packet and Allow/Reject b

- Calls to OS, e.g. saul_read (| 1

 Value store | .
- Store simple values | ‘ """

application store 18

Femto-Containers: Caveats

e Slow down

_ Virtual maChine Overhead App size Startup time Run time
. . . . Native C 74 B - 27 us
* Instruction set limitations WASM3 3228 17096ps 980 ps
— No indirect jumps Femto-Containers 456 B TPs 2133 ps
]]] JerryScript 593 B 5589 s 14 726 ps
e Securlty and i1solation MicroPython ~ 497B 21907 ps 16 325 ps
— BaSIC Securlty measures Only Fletcher32 startup time and run time [1]
— No formal verification (yet)
19

[1]1 K. Zandberg, E. Baccelli. Femto-Containers: DevOps on Microcontrollers with Lightweight Virtualization & Isolation for IoT Software Modules. ArXiv, June 2021.

Overview

* How to maintain your deployment
* Virtual Machine Solutions

* The Linux solution: eBPF

* Femto-Containers

* Example: thread counter

 Conclusion

Example

* Thread counter
- Maintain thread run counters
- Hooks into the scheduler
— Store counters In the value store

21

Workflow

1) Write code 3) Transfer
2) Compile 4) Run

Workflow

* \Write our code
- C
- Rust
- TinyGo?

e Store the run count
for each thread

#include <stdint.h>
#include "bpf/bpfapi/helpers.h”

#define THREAD_START_KEY 0x0

typedef struct {
uint64_t previous; /* previous thread */
uint64_t next; /* next thread */

} pid_ctx_t;

int pid_log(pid_ctx_t *ctx)
I

L
/* Zero pid means no next thread */
if (ctx-=next 1= 0) {
uint32_t counter;
uint32_t thread_key = THREAD_START_KEY +
ctx->next;
bpf_fetch_global(thread_key,
&counter);
counter++;
bpf_store_global(thread_key,
counter);

}

return 0;

Workflow

* Compilation with
LLVM

- eBPF support
* RIOT bindings

0000000000000000 <pid_log>:

: bf 16 00 00 ré ri

79 61 08 00 ri *(u64 *)(r6 + 8)
15 01 08 00 if rl == 0 goto +8 <LBBO_2>
bf a2z 00 00 r2 = ri0

07 02 00 00 r2z += -4

85 00 00 00 call 19

61 a2 fc ff rz = *(u32 *)(r10 - 4)
07 02 00 00 r2z += 1

63 2a fc ff *(u32 *)(rl10 - 4) = r2
79 61 08 00 ri = *(ued *)(r6 + 8)
85 00 00 00 call 17

0)

1:
2
3:
4.
5:
6:
7!
8:
9:
0:

1

0000000000000058 <LBBO_2>:
11: b7 00 00 00 ro =0
12: 95 00 00 00 exit

24

Workflow

* Transfer the application:
- CoAP
- Bluetooth
- Compile-in

* Independent of Femto-containers

25

Workflow

Start VM from RIOT

static void sched_rbpf_cb(kernel_pid_t active_thread,

. kernel_pid_t next_thread)
e Our code Is {
. : sched_ctx_t ctx = {
Comp||ed_|n for S|mp||C|ty .previous = active_thread,
.next = next_thread,

};

int64_t res;

° RIOT eXGCUteS the VM ?EZIE??EE?Kecute{BPF_HOOK_SCHED_, &ctx, sizeof(ctx), &res);
when switching threads

26

Workflow

— lejr] tr]EE (:()(jEE main(): This is RIOT! (Version: 2021.

bpf scheduler example app
ALl up, running the shell now

* Query the value store g

bpf_keyval

counters

https://github.com/bergzand/RIOT/tree/wip/bpf/examples/rbpf sched/

27

https://github.com/bergzand/RIOT/tree/wip/bpf/examples/rbpf_sched/

Overview

* How to maintain your deployment
* Virtual Machine Solutions

* The Linux solution: eBPF

* Femto-Containers

* Example: thread counter

 Conclusion

28

Conclusions

Rethink the cost of a VM on your RIOT device!

Femto-Containers can provide:

e Customized behaviour

* Debugging

e |SO

ating cod

Wit

e

N minima

impact on memory requirements.

29

Femto-Containers

Want to know more?

* Example:
https://github.com/bergzand/RIOT/tree/wip/bpf/examples/rbpf_sched

* Tutorials:
https://github.com/future-proof-iot/Femto-Container_tutorials

* Preprint:
K. Zandberg, E. Baccelli. Femto-Containers: DevOps on Microcontrollers with Lightweight Virtualization &
Isolation for IoT Software Modules. ArXiv, June 2021.
https://arxiv.org/abs/2106.12553

30

https://github.com/bergzand/RIOT/tree/wip/bpf/examples/rbpf_sched
https://github.com/future-proof-iot/Femto-Container_tutorials
https://arxiv.org/abs/2106.12553

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

