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How to maintain your deployment?

* Deploying IoT nodes at scale challenging.

 How about maintaining them in the field?



Current Issues

One of the devices in the field shows
odd behaviour, can we debug this?

A third party wants to run code
on our devices.

A customer needs modified behaviour on
the deployed nodes.



Categories of Solutions

* Traditional solution: firmware updates
- Simple, but has downsides
- Maintaining and deploying another firmware version is costly

 Alternative solutions? Modular updates
— Dynamic linking
- Virtual Machines
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Virtual Machine Solutions
* Python

AN

» Javascript
* WebAssembly
* MicroEJ

* (And others)




Virtual Machine Solutions

Downsides: bulky to add for simple applications [1]

Hosting engine requirements Firmware flash distribution
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Sneak Peek

 Femto-containers:
— Much smaller VMs!
- Based on eBPF
- Hosting engine:
« 4.7 KiB ROM
* 664 B of RAM
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The Linux solution: eBPF

Event-driven in-kernel
sandbox:

- Tracing
- Profiling
— Monitoring

- Network Protocol
parsers
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The Linux solution: eBPF

e In-kernel Virtual Machine:

DDDDDDDDD

- 64 bit RISC architecture
- Register based

- 512 byte stack

* Allows for verification of
loaded applications:

— Application must halt

SSSSS
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Femto-Containers

e Simple virtual machine
* Hardware independent
* Short-lived, Event driven

* Integration with RIOT
* Based on Linux eBPF
* Minimal footprint
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Femto-Containers

Why eBPF?

v 512 Byte stack

v Limited instruction set
v Secure by design

x 64 bit architecture
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Femto-Containers: Isolation

e Sandboxed from the
host

- Pre-flight checks
- Memory access guards

Instruction ——» Instruction Other Continue
Decode In struction
Read/Write Memory
Acces Lists Access —>» Abort
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Femto-Containers: Events

Event triggered:

- Network
- USB
- System events

- Timers

Adding hooks Is cheap




Femto-Containers: OS Interaction

* Context and return value
- Packet and Allow/Reject b

- Calls to OS, e.g. saul_read ( | 1

 Value store | .
- Store simple values | ‘ """

application store 18




Femto-Containers: Caveats

e Slow down

_ Virtual maChine Overhead App size Startup time  Run time
. . . . Native C 74 B - 27 us
* Instruction set limitations WASM3 3228 17096ps 980 ps
— No indirect jumps Femto-Containers 456 B TPs 2133 ps
] ] ] JerryScript 593 B 5589 s 14 726 ps
e Securlty and i1solation MicroPython ~ 497B 21907 ps 16 325 ps
— BaSIC Securlty measures Only Fletcher32 startup time and run time [1]
— No formal verification (yet)
19
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Example

* Thread counter
- Maintain thread run counters
- Hooks into the scheduler
— Store counters In the value store
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Workflow

1) Write code 3) Transfer
2) Compile 4) Run




Workflow

* \Write our code
- C
- Rust
- TinyGo?

e Store the run count
for each thread

#include <stdint.h>
#include "bpf/bpfapi/helpers.h”

#define THREAD_START_KEY 0x0

typedef struct {
uint64_t previous; /* previous thread */
uint64_t next; /* next thread */

} pid_ctx_t;

int pid_log(pid_ctx_t *ctx)
I

L
/* Zero pid means no next thread */
if (ctx-=next 1= 0) {
uint32_t counter;
uint32_t thread_key = THREAD_START_KEY +
ctx->next;
bpf_fetch_global(thread_key,
&counter);
counter++;
bpf_store_global(thread_key,
counter);

}

return 0;




Workflow

* Compilation with
LLVM

- eBPF support
* RIOT bindings

0000000000000000 <pid_log>:

: bf 16 00 00 ré ri

79 61 08 00 ri *(u64 *)(r6 + 8)
15 01 08 00 if rl == 0 goto +8 <LBBO_2>
bf a2z 00 00 r2 = ri0

07 02 00 00 r2z += -4

85 00 00 00 call 19

61 a2 fc ff rz = *(u32 *)(r10 - 4)
07 02 00 00 r2z += 1

63 2a fc ff *(u32 *)(rl10 - 4) = r2
79 61 08 00 ri = *(ued *)(r6 + 8)
85 00 00 00 call 17

0)

1:
2
3:
4.
5:
6:
7!
8:
9:
0:

1

0000000000000058 <LBBO_2>:
11: b7 00 00 00 ro =0
12: 95 00 00 00 exit
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Workflow

* Transfer the application:
- CoAP
- Bluetooth
- Compile-in

* Independent of Femto-containers
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Workflow

Start VM from RIOT

static void sched_rbpf_cb(kernel_pid_t active_thread,

. kernel_pid_t next_thread)
e Our code Is {
. . . . . : sched_ctx_t ctx = {
Comp||ed_|n for S|mp||C|ty .previous = active_thread,
.next = next_thread,

};

int64_t res;

° RIOT eXGCUteS the VM ?EZIE??EE?Kecute{BPF_HOOK_SCHED_, &ctx, sizeof(ctx), &res);
when switching threads
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Workflow

— lejr] tr]EE (:()(jEE main(): This is RIOT! (Version: 2021.

bpf scheduler example app
ALl up, running the shell now

* Query the value store g

bpf_keyval

counters

https://github.com/bergzand/RIOT/tree/wip/bpf/examples/rbpf sched/
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https://github.com/bergzand/RIOT/tree/wip/bpf/examples/rbpf_sched/
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Conclusions

Rethink the cost of a VM on your RIOT device!

Femto-Containers can provide:

e Customized behaviour

* Debugging

e |SO

ating cod

Wit

e

N minima

impact on memory requirements.
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Femto-Containers

Want to know more?

* Example:
https://github.com/bergzand/RIOT/tree/wip/bpf/examples/rbpf_sched

* Tutorials:
https://github.com/future-proof-iot/Femto-Container_tutorials

* Preprint:
K. Zandberg, E. Baccelli. Femto-Containers: DevOps on Microcontrollers with Lightweight Virtualization &
Isolation for IoT Software Modules. ArXiv, June 2021.
https://arxiv.org/abs/2106.12553
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https://github.com/bergzand/RIOT/tree/wip/bpf/examples/rbpf_sched
https://github.com/future-proof-iot/Femto-Container_tutorials
https://arxiv.org/abs/2106.12553

Thanks!
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