
RIOT-rs
Re-Imagining RIOT in Rust

RIOT Summit – September 2024

Kaspar Schleiser

Agenda

1. Why?
2. How?
3. RIOT-rs Status
4. Community Aspects
5. Conclusions/Outlook

RIOT as we know it

Awesome developer experience
combining

● easy to get started
● lots of functionality available & integrated
● wide hardware support
● applications usually pretty portable

What’s the problem?

Inherent limits of C programming

● API design, abstraction, safety…
● Dealing with the toolchain mess
● Reliability issues

Bottlenecks in RIOT(-C)

● Peoplepower for system maintenance
● Peoplepower for CI

Enter Rust

The “new” kid on the block, challenging C…

… with a different trade-off combining:

● Built-in memory safety;
● High-level ergonomics;
● Low-level control;

With modern tooling …
Recent Rust rant: see this post
on Google Open Source Blog

https://opensource.googleblog.com/2023/06/rust-fact-vs-fiction-5-insights-from-googles-rust-journey-2022.html

Awesome developer experience
combining

● easy to get started
● lots of functionality available & integrated
● wide hardware support
● applications usually pretty portable

Modern programming
combining

● Built-in memory safety
● High-level ergonomics
● Low-level control
● Modern tooling

Embedded Rust

➔ There’s even a very lively Embedded
Rust open source community!

- tons of drivers, libs developed and maintained
- operating systems (Tock OS, Hubris),
- frameworks (Embassy, RTIC…)

Bare-metal? Well… no.

Operating systems? Capable, but:
● Tock OS: Cortex-M only (until recently), MPU-dependency, rather “big” last time we

checked, no async Rust
● Hubris: purpose-built for Oxide’s in-house needs, Cortex-M+MPU only, no async Rust

Framework? Interesting middle-ground.
● For instance: Embassy, RTIC
● That’s what we looked at in more details

So why not Embedded Rust as-is?

- “Embassy is the next-generation framework for embedded applications. Write safe,
correct and energy-efficient embedded code faster, using the Rust programming
language, its async facilities, and the Embassy libraries.”

- long feature list: timers, real-time, low-power, networking, bluetooth, LoRa, USB,
bootloader & DFU

- reasonable hardware support: nrf, rp2040, stm32, esp32

Embassy? Case-study

Why not (as is):

- more of a collection of building blocks
- high quality code, but quite low level
- lacking on portability and more complex examples

Embassy? Case-study

Awesome developer experience
combining

● easy to get started
● lots of functionality available & integrated
● wide hardware support
● applications usually pretty portable

Modern programming
combining

● Built-in memory safety
● High-level ergonomics
● Low-level control
● Modern tooling

Modern programming
combining

● Built-in memory safety
● High-level ergonomics
● Low-level control
● Modern tooling

We want it all!

Awesome developer experience
combining

● easy to get started
● lots of functionality available & integrated
● wide hardware support
● applications usually pretty portable

Bring memory safety to C ? No.
So Rust is the way. Let’s go!

Agenda

1. Why?
2. How?
3. RIOT-rs Status
4. Community Aspects
5. Conclusions/Outlook

Road to Rust

driversμkernel
(core / threads)

libs

HAL (cpu/board/periph)

sys

C
Rust

app

driversμkernel
(core)

libs

HAL (cpu/board/periph)

sys

(bootloader) (bootloader)

app appapp

drivers
(embedded-

hal)

HAL
(embassy)

 sys
 (crates.io)

app
(+ libs)

bootloader

scheduler
(core /

threads)

libs
(crates.io)

app

2020 20232021 20222019 2024

RIOT + Rust wrappers RIOT-fp prototypes RIOT-rs

2018

Example: USB stack

- Starting point:

- Embassy: 15 versions of `usb_serial.rs`, 4 versions of `usb_ethernet.rs`, each with

- MCU specific clock & USB peripheral setup
- USB stack setup
- USB class setup (serial or ethernet)
- in case of ethernet, network stack setup
- serial or TCP echo logic

RIOT-rs Abstraction Example (1)

RIOT-rs:

- cleanly separate MCU specific clock & USB peripheral setup
- provide shared USB stack setup
- there’s one usb_serial example
- there’s no usb_ethernet example
- USB classes, ethernet & network stack as ready-to-use modules

-> much increased reusability and portability

RIOT-rs Abstraction Example (1)

Example: Peripheral APIs, “embedded-hal”

- Starting point
- “embedded-hal” is the Rust API for GPIO/I2C/SPI/…
- many (e.g., sensor) drivers available
- but, initialization not part of it

- RIOT-rs
- we analyze embassy-nrf, embassy-rp, embassy-stm32, esp-rs APIs
- we abstract peripheral initialization
- we provide a unified API

-> this enables portable peripheral-using applications

RIOT-rs Abstraction Example (2)

Example: Random numbers

- Starting points:
- Embassy: per-MCU RNG peripheral examples (~8)
- Ecosystem: multiple PRNG algos, a random trait

- RIOT-rs:
- abstracts RNG peripherals
- chooses a usable PRNG
- provides a high level API providing fast RNG and CSRNG

RIOT-rs High-Level Features (1)

-> “random” just available as module

Example: CoAP stack

- Starting point:
- Embassy stops at TCP/UDP layer 4

- RIOT-rs:
- Develops & integrates CoAP/EDHOC/OSCORE on embedded_nal by @chrysn

RIOT-rs High-Level Features (2)

-> secure CoAP server can just be enabled

- Starting point (Embassy):
- mostly pure Cargo with board specific settings in Cargo.toml, .cargo/config.toml, …

- RIOT-rs:
- wraps Cargo in laze
- Cargo board specific settings get generated on-the-fly

→ this provides the equivalent of `make BOARD=foo …`

RIOT-rs Build System

The general approach is to use Embassy as starting point, and:

● increase portability
● reduce boilerplate
● provide higher-level “turn-key” features
● (add other OS facilities)

RIOT-rs in a nutshell

Agenda

1. Why?
2. How?
3. RIOT-rs Status
4. Community Aspects
5. Conclusions/Outlook

RIOT-rs features (Summer 2023)

System:
- async runtime
- preemptive scheduler

Network stack: Tooling:

Peripherals: Integration:
- non-portable “hello-world”

Supported MCUs / boards:
- NRF52840DK

We started with basically nothing but an idea.

RIOT-rs features (Summer 2024)

System:
- async runtime
- preemptive scheduler
- random PRNG/CSRNG

Network stack:
- Ethernet / WiFi
- IPv4 / IPv6
- ICMP/UDP/TCP/DHCPv4
- CoAP/OSCORE/EDHOC
- HTTP server

Tooling:
- unified debug logging
- defmt

Peripherals:
- GPIO
- I2C
- SPI
- USB (ethernet, serial, HID)

Integration:
- portable blinky
- portable net examples
- portable usb examples

Supported MCUs / boards:
- NRF5x (some -DKs)
- RP2040 (Rpi Pico (W))
- STM32 (some Nucleos)
- RISC-V ESP32 (esp32c6)

Obviously we’re not done yet

Missing features include:

- IPv6 auto configuration
- IEEE80215.4/6lowpan
- power management
- software updates
- much more

But, feature-wise, we’re getting there.

Boilerplate?
RIOT-c minimal project

RIOT-rs minimal project

Reliability?

- not enough exposure to tell yet
- it “feels” very robust
- one anecdote: Upon first successful compilation & flashing after integrating

Rpi Pico W WiFi + HTTP server setup RIOT-rs kept running for months (until
the office was moved).

-> reliability wise, promising

Rust overhead?

Code-size reality check:

RIOT RIOT-rs

blinky 4436b 3860b

minimal networking 31872b 32527b

RIOT-rs: examples/embassy-net-udp with echo logic removed, compiled with laze build -b nrf52840dk -d defmt
-d debug-console
RIOT-c: examples/gnrc_minimal, modified to use usbus_cdc_ecm instead of netdev_default, removed core_panic
printf calls, built with BOARD=nrf52840dk LTO=1 DEVELHELP=0 make clean all

(on nrf52840dk using usb ethernet)

Modern programming
combining

● Built-in memory safety
● High-level ergonomics
● Low-level control
● Modern tooling

We can have it all!

Awesome developer experience
combining

● easy to get started
● lots of functionality available & integrated
● wide hardware support
● applications usually pretty portable

Work to do but looking good!

Agenda

1. Why?
2. How?
3. RIOT-rs Status
4. Community Aspects
5. Conclusions/Outlook

We are not alone!

(incomplete)

Compare to this:

Community Aspects

Rust embedded ecosystem is

● lively, growing & gaining traction
● distributed
● sharing lots of code, contributions flow in all directions
● Rust as a language is co-evolving!

Community aspects

Example:

1. RIOT-rs developed CoAP stack based on embedded-nal-async
2. smoltcp was missing some implementation
3. @chrysn did impl, PR’ed to smoltcp
4. RIOT-rs, embassy, RTIC, bare-metal can now all use it

… and much more in the other direction.

Agenda

1. Why?
2. How?
3. RIOT-rs Status
4. Community Aspects
5. Outlook & Conclusions

Outlook: around the corner

Around the corner:

- dual-core support
- finish peripheral API unification
- K/V config storage
- better integrate Cargo & laze
- HIL testing

Until next Summit:

- fix network stack feature holes (DHCPv6, 6LoWPAN …)
- secure software updates
- power management

Outlook: Code correctness

● Formal verification
○ Hax by Cryspen: regular Rust -> F* -> proofs (see https://hacspec.org/blog/posts/hax-v0-1/)
○ Hax integrated in RIOT-rs CI
○ bare minimum but big plans
○ RIOT-rs as guinea pig for Hax on embedded Rust

● Use in Safety critical systems
○ about to integrate Ferrocene Compiler (see https://ferrocene.dev/en/)
○ ISO26262 (ASIL D) and IEC 61508 (SIL 4) qualifications

-> Potentially more reliability benefits

https://hacspec.org/blog/posts/hax-v0-1/
https://ferrocene.dev/en/

Conclusions / Perspectives with RIOT-rs

- We can match the awesome sides of RIOT!
- Application portability, “batteries-included”, generally awesome DX

- We can improve embedded Rust!
- Provide fully integrated system and distrib. (building on a decade of RIOT experience)

- We can fix RIOT bottlenecks!
- Better share burden of HAL, periph/driver devel. & maintenance
- Rationalize our broad, but uneven HW support
- More modern tooling & ergonomics: increased productivity in the long-run!

- We can gain security guarantees
- Memory safety
- Formal verification & qualified compilers

That’s all folks! Time for Q&A

RIOT-rs repository

https://github.com/future-proof-iot/RIOT-rs

