

You wouldn't HACK a CAR?

A Pentester's approach to embedded security on automotive ECUs

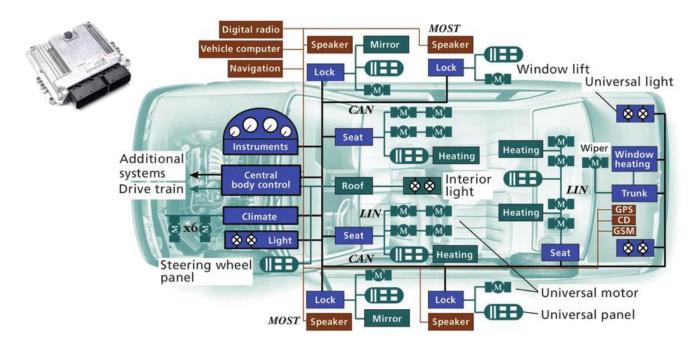
■ Bundesministerium
Klimaschutz, Umwelt,
Energie, Mobilität,
Innovation und Technologie

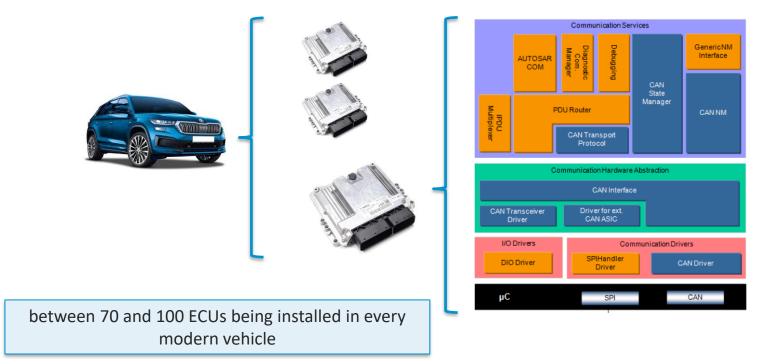
Bundesministerium Digitalisierung und Wirtschaftsstandort

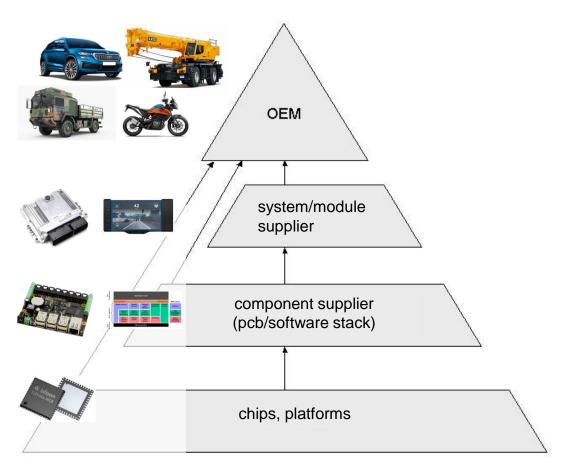
Autonomous driving

Image: https://bernardmarr.com/how-tesla-is-using-artificial-intelligence-to-create-the-autonomous-cars-of-the-future/
Images: Knight Rider, Universal Television

Voice Control


Infotainment




YOU WOULDN'T HACK A CAR

Car Architecture

Example: AutoSAR, Platform, Chip, Software

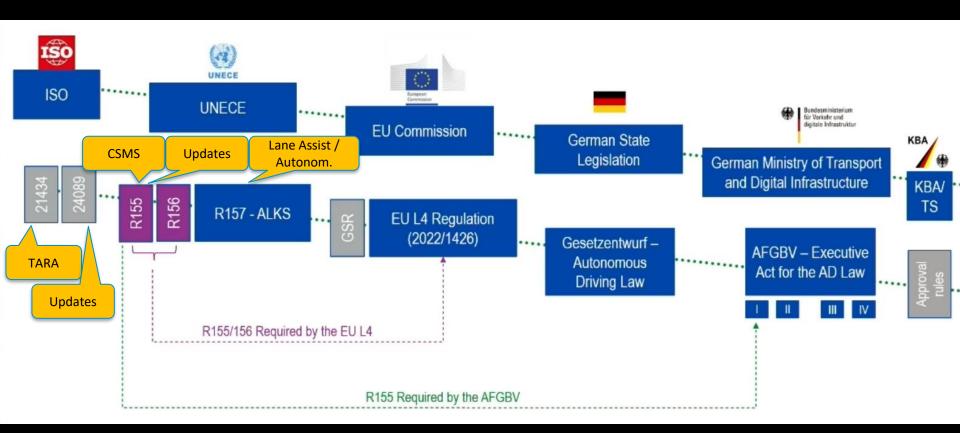
Jeep Hack (2015)

- vulnerability in the UConnect infotainment system
- cars exposed port 6667 via the Sprint 3G network
- initially 2695 vehicles were found
 - Dodge Viper, RAM, Jeep Cherokee, Chrysler, ...
- later estimates of vulnerable vehicles to be somewhere between 292,000 and 471,000
- lead to recall of 1.4 million cars by Chrysler


Miller, Valasek. Remote Exploitation of an Unaltered Passenger Vehicle. DEF CON 23 Hacking Conference. Las Vegas, NV: DEF CON. Aug. 2015

https://www.wired.com/2016/08/jeep-hackers-return-high-speed-steering-acceleration-hacks/

Images: blackhat.com, wired.com


Tesla Infotainment at Pwn20wn (2023)

- Tesla Model 3 infotainment through bluetooth
- elevated privileges to root

ICS > 43 > 43.040 > 43.040.15

ISO/SAE 21434:2021

Road vehicles — Cybersecurity engineering

ABSTRACT

PREVIEW

This document specifies engineering requirements for cybersecurity risk management regarding concept, product development, production, operation, maintenance and decommissioning of electrical and electronic (E/E) systems in road vehicles, including their components and interfaces.

A framework is defined that includes requirements for cybersecurity processes and a common language for communicating and managing cybersecurity risk.

This document is applicable to series production road vehicle E/E systems, including their components and interfaces, whose development or modification began after the publication of this document.

This document does not prescribe specific technology or solutions related to cybersecurity

GENERAL INFORMATION

Status:

 Published Publication date: 2021-08

Edition: 1 Number of pages: 81

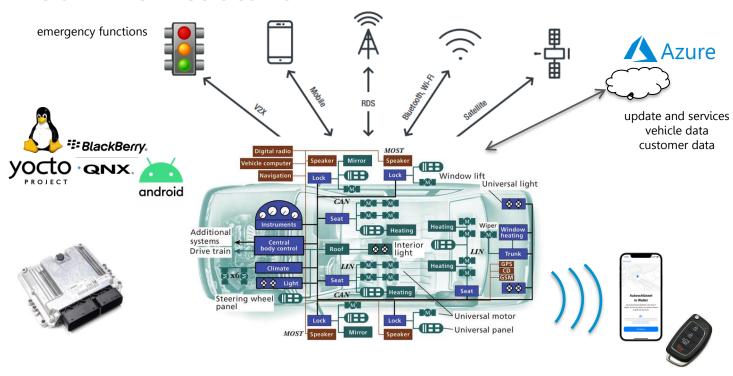
Technical Committee: ISO/TC 22/SC 32 Electrical and electronic components and general system aspects

GENERAL INFORMATION®

Status: @ Published

Publication date: 2021-08

YOU WOULDN'T TEST FOR VULNS

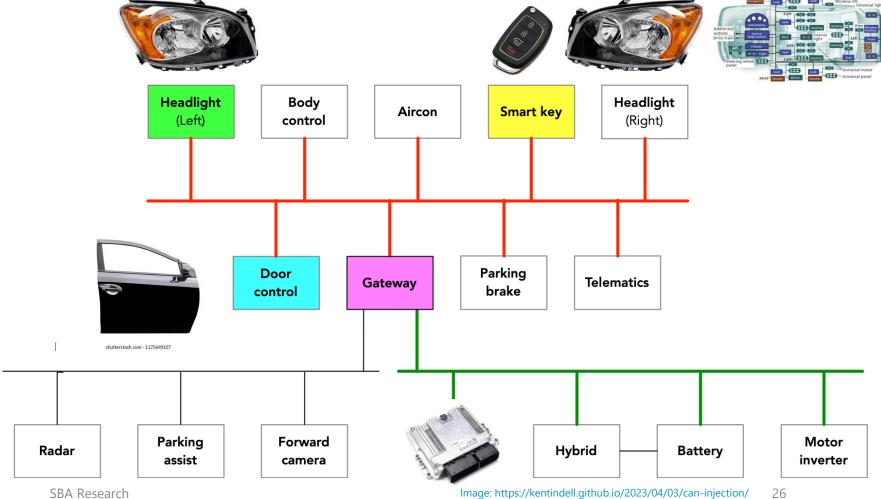

https://torrentfreak.com/sorry-the-you-wouldnt-steal-a-car-anti-piracy-ad-wasnt-pirated-170625/

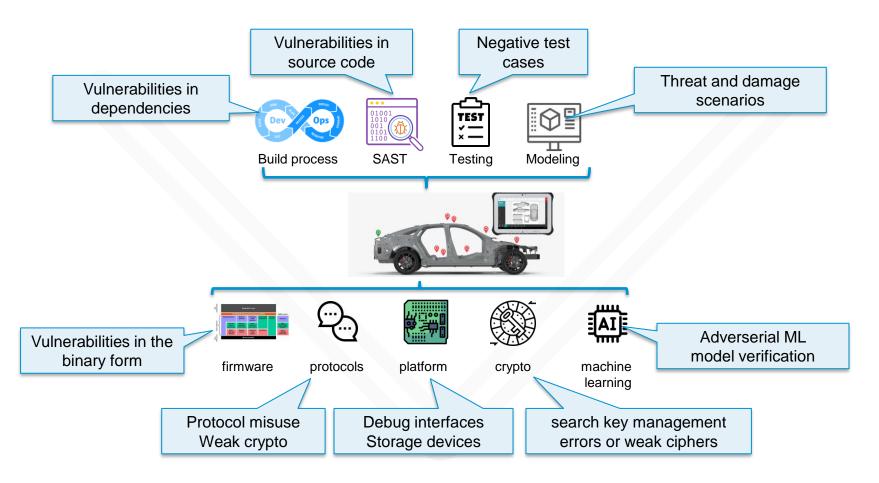
OWASP IOT Top 10 with automotive aspects

- Weak Guessable, or Hardcoded Passwords
- 2. Insecure Network Services
- 3. Insecure Ecosystem Interfaces
- 4. Lack of Secure Update Mechanism
- 5. Use of Insecure or Outdated Components

- 5. Insufficient Privacy Protection
- 6. Insecure Data Transfer and Storage
- 7. Lack of Device Management
- 8. Insecure Default Settings
- 9. Lack of Physical Hardening

Car Architecture

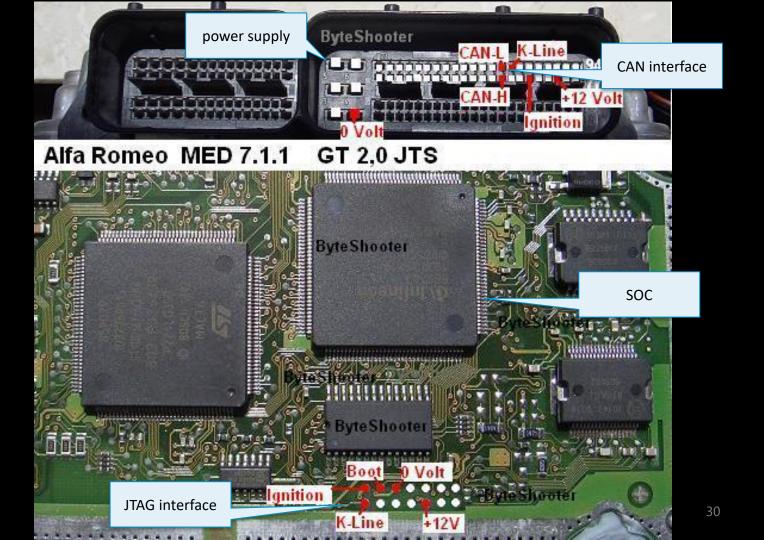

Cloning of the Chip



https://www.youtube.com/watch?v=JmcxyVachho

NXP Original PCF7935 Philips Transponder Chip ID

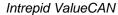
Add to Wishlist


YOU WOULDN'T CONNECT YOUR TEST EQUIPMENT

https://torrentfreak.com/sorry-the-you-wouldnt-steal-a-car-anti-piracy-ad-wasnt-pirated-170625/

Device Gateway

- search for part numbers
- search for pinouts
- look for cars using this device
- tuning-forums are a nice source



CAN Interfaces

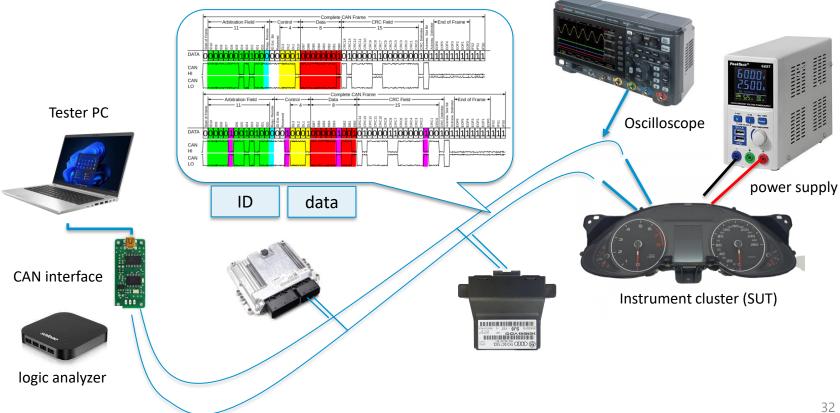
Professional use:

- Intrepid ValueCAN
- Vector Can Case

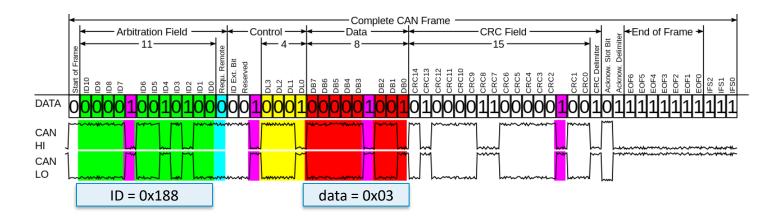
Vector Can Case

Budget lab:

- USBTin
- Raspberry PiCAN



Peak PCAN-USB


USBTin

PiCAN

Setup for Research

The CAN frame

WARNING:

- do testing of hardware with a trained electrical engineer
- don't do this on your car [on the street]
- it could harm your car, your devices or your health

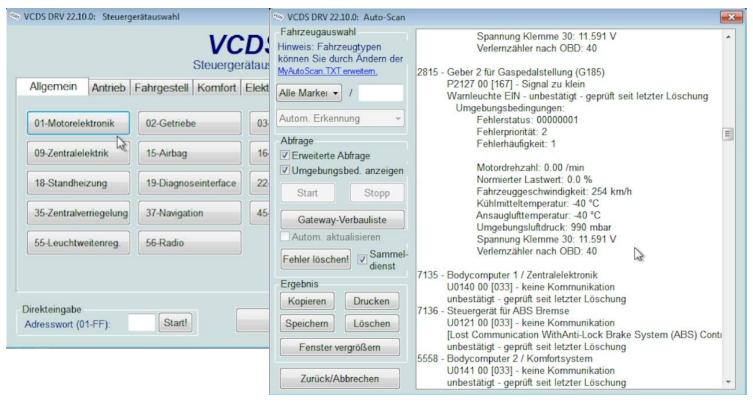
YOU WOULDN'T USE DIAGNOSTICS

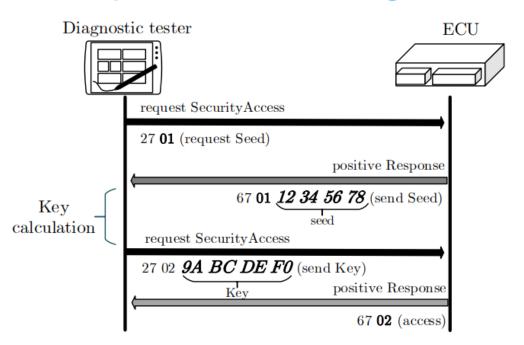
https://torrentfreak.com/sorry-the-you-wouldnt-steal-a-car-anti-piracy-ad-wasnt-pirated-170625/

7 layer OSI model | **Unified Diagnostic Services (UDS)**

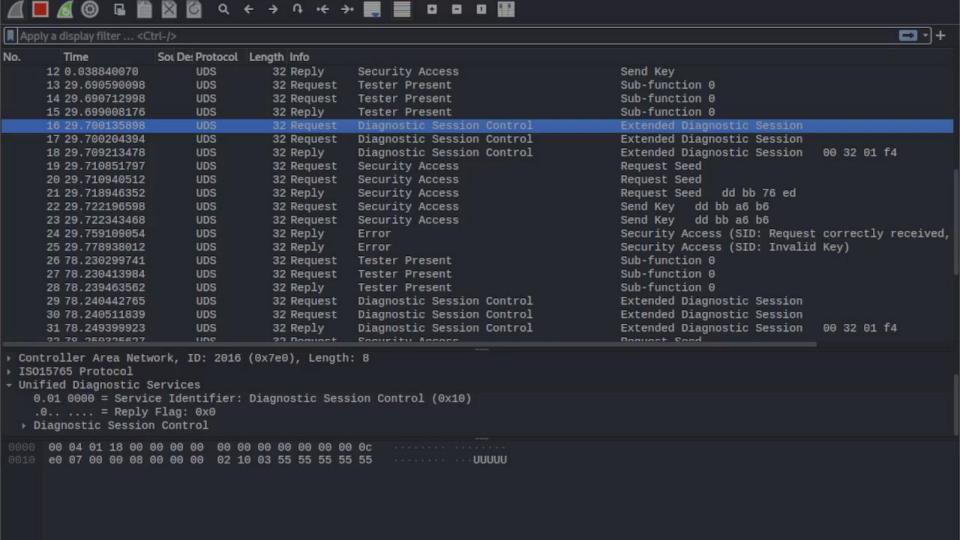
	UDS on CAN bus	UDS on FlexRay	UDS on IP	UDS on K-Line	UDS on LIN bus
Application		Specification and requirements ISO 14229-1			
Application	UDSon CAN ISO 14229-3	UDSon FR ISO 14229-4	UDSon IP ISO 14229-5	UDSon K-Line ISO 14229-6	UDSon LIN ISO 14229-7
Presentation		hicle manufacturer speci	ific		
Session	Diagnostic communication over Controller Area		Session layer services ISO 14229-2		
Transport	Transport & network layer	Transport & network layer	Transport & network layer	Not applicable	Transport & network layer
Network	services DoCAN ISO 15765-2	services CoFR ISO 10681-2	services DoIP		services LIN ISO 17987-2
Data link	CAN ISO 11898-1	FlexRay ISO 17458-2	DoIP IEEE 802.3 ISO 13400-3	DoK-Line ISO 14230-2	LIN ISO 17987-3
Physical	CAN ISO 11898-2	FlexRay ISO 17458-4		DoK-Line ISO 14230-1	LIN ISO 17987-4

Image: https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services


Diagnostics (UDS over CAN ISO 14229-3)

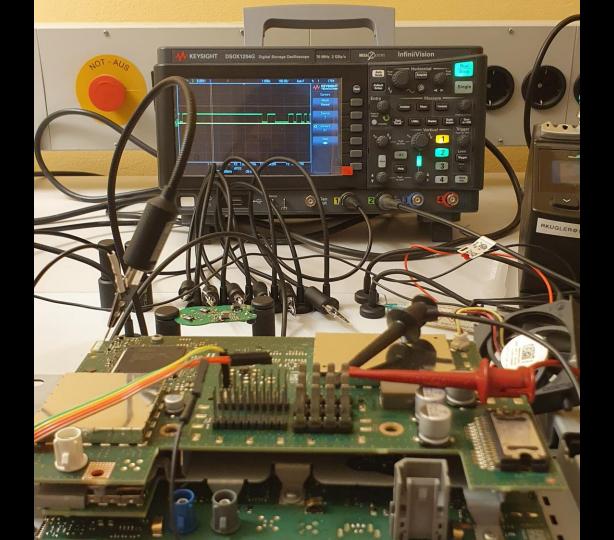

VCDS Ross Tech https://www.ross-tech.com/vag-com/ Image: https://www.influxbigdata.in/post/uds-unified-diagnostic-services-protocol-iso-14229-pdf

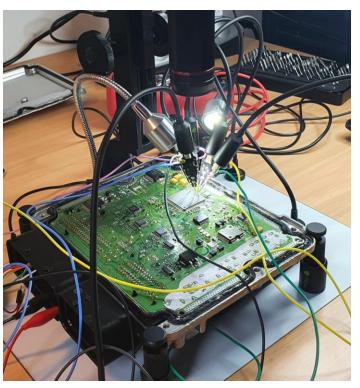
Demo: Diagnostics with VCDS



	0x10	0×50	Diagnostic Session Control	Control which UDS services are available
Diagnostic and Communications Management	0x11	0x51	ECU Reset	Reset the ECU ("hard reset", "key off", "soft reset")
	0x27	0x67	Security Access	Enable use of security-critical services via authentication
	0x28	0x68	Communication Control	Turn sending/receiving of messages on/off in the ECU
	0x29	0x69	Authentication	Enable more advanced authentication vs. 0x27 (PKI based exchange)
	0x3E	0x7E	Tester Present	Send a "heartbeat" periodically to remain in the current session
	0x83	0xC3	Access Timing Parameters	View/modify timing parameters used in client/server communication
	0x84	0xC4	Secured Data Transmission	Send encrypted data via ISO 15764 (Extended Data Link Security)
	0x85	0xC5	Control DTC Settings	Enable/disable detection of errors (e.g. used during diagnostics)
	0x86	0xC6	Response On Event	Request that an ECU processes a service request if an event happens
	0x87	0xC7	Link Control	Set the baud rate for diagnostic access
ta Transmission	0x22	0x62	Read Data By Identifier	Read data from targeted ECU - e.g. VIN, sensor data values etc.
	0x23	0x63	Read Memory By Address	Read data from physical memory (e.g. to understand software behavior)
	0x24	0x64	Read Scaling Data By Identifier	Read information about how to scale data identifiers
	0x2A	0x6A	Read Data By Identifier Periodic	Request ECU to broadcast sensor data at slow/medium/fast/stop rate
	0x2C	0x6C	Dynamically Define Data Identifier	Define data parameter for use in 0x22 or 0x2A dynamically
Da	0x2E	0x6E	Write Data By Identifier	Program specific variables determined by data parameters
	0x3D	0x7D	Write Memory By Address	Write information to the ECU's memory
DTCs	0x14	0x54	Clear Diagnostic Information	Delete stored DTCs
	0x19	0×59	Read DTC Information	Read stored DTCs, as well as related information
	0x2F	0x6F	Input Output Control By Identifier	Gain control over ECU analog/digital inputs/outputs
	0x31	0x71	Routine Control	Initiate/stop routines (e.g. self-testing, erasing of flash memory)
Upload/ Download	0x34	0x74	Request Download	Start request to add software/data to ECU (incl. location/size)
	0x35	0x75	Request Upload	Start request to read software/data from ECU (incl. location/size)
	0x36	0x76	Transfer Data	Perform actual transfer of data following use of 0x74/0x75
	0x37	0×77	Request Transfer Exit	Stop the transfer of data
	0x38	0x78	Request File Transfer	Perform a file download/upload to/from the ECU
		SBA Re		https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services

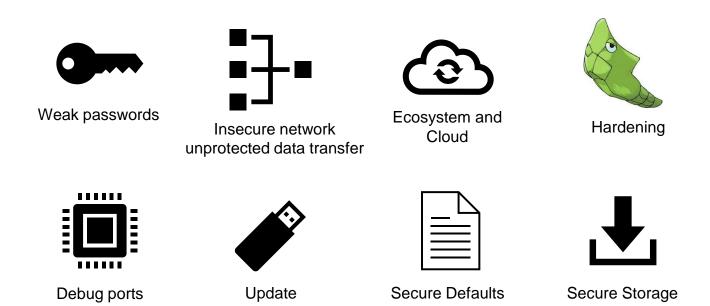
UDS Security Access Challenge Response


Evaluation of Vehicle Diagnostics Security - Implementation of a Reproducible Security Access, Martin Ring, Tobias Rensen and Reiner Kriesten (2014), p.204


YOU WOULDN'T OPEN THE CASE

https://torrentfreak.com/sorry-the-you-wouldnt-steal-a-car-anti-piracy-ad-wasnt-pirated-170625/

Side Channel Attacks and Debug Interfaces


- JTAG access
- SPI bus access
- Change boot modes via exposed pins/pads
- Desolder Flash and use a socket
- Dump Flash and load it in Ghidra

"We will produce tablets on wheels"

Christian Senger (VW, 2017)

OWASP IOT Top 10 (Automotive Aspects)

The Software Defined Vehicle

- High Performance Computer (HPC) to centralize software on one platform
- Software defined networks: less cables, less ECUs, less weight -> software defined
- Cloud services and Updates
 Over-the-Air Updates incl.
 firmware updates (FOTA)

SBA Meetup // ASRG Vienna // eBPF Vienna

Applied Research Consulting in Customer Projects

ASSESS

Threats and Security Architecture

Security Requirements

Crypto Designs

Threat Modelling

EVALUATE

Identify Attacks and Defenses

Static Code Analysis

Security Test Case Generation

Defense in Depth (DiD)

Tailored Security Trainings

Threat Analysis
Crypto Engineering

VALIDATE

Software and System Testing

Fuzz Testing

Black- and Grey-box Testing

Proof of Concept Validation

Container Security
Combinatorial Security
Testing

