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Parameters for the IoT

On the cost of cryptography for the IoT

code size
memory usage
execution time
efficiency on the high-end server?
protections against side-channel attacks?
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Parameters for the IoT

What are side-channel attacks?

Leakage from the device
Time, electrical consumption, EM radiation
simple power analysis (SPA) vs differential power analysis (DPA)

Picture by oskay on Flickr
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Parameters for the IoT

What are side-channel attacks?

Inducing faults in the device
Glitch, laser pulse

Picture by ViaMoi on Flickr
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Parameters for the IoT

Usage and ownership

Actors:
Key owner
Device owner
Actual user

Usually, these are the same person, but…
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Parameters for the IoT

Usage and ownership

When key owner ̸= device owner
Banking card
DRM

But hopefully the same person in open-source contexts!
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Parameters for the IoT

Usage and ownership

When key/device owner ̸= actual user
Not always controlling the device

E.g., devices spread over a large area
E.g., on-site personnel
E.g., lost device

Distant eavesdropping

Protections against SCA can be needed.
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Permutations!

Symmetric crypto: what textbooks and intro’s say

Symmetric cryptographic primitives:
Block ciphers
Stream ciphers
Hash functions

And their modes-of-use

Picture by GlasgowAmateur
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Permutations!

Examples of permutations

In Salsa, Chacha, Grindhal…
In SHA-3 candidates: CubeHash, Grøstl, JH, MD6, …
In CAESAR candidates: Ascon, Icepole, Norx, π-cipher, Primates,
Stribob, …

And of course in Keccak
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Permutations!

The sponge construction

input output

outer
inner

0

0

r

c

f f f f f f

absorbing squeezing

Calls a permutation f
The capacity c determines the generic security:

Hashing: 2c/2
Authentication, encryption: 2c−ϵ
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Permutations!

Keccak-f

The seven permutation army:
25, 50, 100, 200, 400, 800, 1600 bits
toy, lightweight, fastest
standardized in [FIPS 202]

Repetition of a simple round function
that operates on a 3D state
(5× 5) lanes
up to 64-bit each
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Permutations!

Keccak-f in pseudo-code

KECCAK-F[b](A) {
  forall i in 0…nr-1
    A = Round[b](A, RC[i])
  return A
}

Round[b](A,RC) {
  θ step
  C[x] = A[x,0] xor A[x,1] xor A[x,2] xor A[x,3] xor A[x,4], forall x in 0…4
  D[x] = C[x-1] xor rot(C[x+1],1), forall x in 0…4
  A[x,y] = A[x,y] xor D[x], forall (x,y) in (0…4,0…4)

  ρ and π steps
  B[y,2*x+3*y] = rot(A[x,y], r[x,y]), forall (x,y) in (0…4,0…4)

  χ step
  A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y]), forall (x,y) in (0…4,0…4)

  ι step
  A[0,0] = A[0,0] xor RC

  return A
}

https://keccak.team/keccak_specs_summary.html
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Permutations!

Bit interleaving

= +

ROT64 ↔ 2× ROT32
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Permutations!

The unbearable lightness of permutations

Example: hashing with target security strength 2c/2
Davies-Meyer block cipher based hash

chaining value (block size): n ≥ c
input block size (“key” length): typically k ≥ n
feedforward (block size): n
⇒ total state ≥ 3c

Sponge
permutation width: c+ r
r can be made arbitrarily small, e.g., 1 byte
⇒ total state ≥ c+ 8
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Permutations!

Cost of primitives and modes together

[Yalla, Homsirikamol, Kaps, DIAC 2014]
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Permutations!

Symmetric crypto: a more correct picture

Symmetric cryptographic primitives:
Block ciphers
Key stream generators
Permutations

And their modes-of-use
Picture by Sébastien Wiertz
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Keyed applications
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Keyed applications

Use Sponge for MACing

0 f f

Key

…

Padded message

f ff

MAC
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Keyed applications

Use Sponge for (stream) encryption

0 f f

Key IV

f

Key stream
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Keyed applications

Single pass authenticated encryption

0 f f

Key

…

Padded messageIV

f

Key stream

ff

MAC

But this is no longer the sponge …
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Keyed applications

The duplex construction

Generic security provably equivalent to that of sponge
Applications: authenticated encryption, reseedable
pseudorandom generator …
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Strobe
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Strobe

What is Strobe?

Layer above the duplex construction
Safe and easy syntax, to achieve, e.g.,

secure channels
signatures over a complete session

Very compact implementation
Mechanism to prevent side-channel attacks

[Mike Hamburg — https://strobe.sourceforge.io/]
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Strobe

Operations and data flow in Strobe

figure courtesy of Mike Hamburg
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Strobe

Example: key derivation

KEY(master shared key K)
RATCHET
derived key 1← PRF(16 bytes)
RATCHET
derived key 2← PRF(16 bytes)
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Strobe

Example: protocol

KEY(shared key K)
AD[nonce](sequence number i)
AD[auth-data](client IP address | server IP address)
send_ENC(“GET file”)
send_MAC(128 bits)
recv_ENC(buffer)
recv_MAC(128 bits)
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Ketje and Keyak
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Ketje and Keyak

Ketje goals

Nonce-based AE function
96-bit or 128-bit security (incl. multi-target)
Sessions of header-body pairs

keeping the state during the session
Small footprint
Target niche: secure channel protocol on secure chips

banking card, ID, (U)SIM, secure element, FIDO, etc.
secure chip has strictly incrementing counter

Using reduced-round Keccak-f[400] or Keccak-f[200], to allow
implementation re-use
cryptanalysis re-use
reasonable side-channel protections
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Ketje and Keyak

Ketje instances and lightweight features

feature Ketje Jr Ketje Sr
state size 25 bytes 50 bytes
block size 2 bytes 4 bytes

processing computational cost
initialization per session 12 rounds 12 rounds
wrapping per block 1 round 1 round
8-byte tag comp. per message 9 rounds 7 rounds
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Ketje and Keyak

Keyak goals

Nonce-based AE function
128-bit security (incl. multi-target)
Session of header-body pairs

keeping the state during the session
Optionally parallelizable
Conservative safety margin
Using reduced-round Keccak-f[1600] or Keccak-f[800], to allow

implementation re-use
cryptanalysis re-use
reasonable side-channel protections
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Ketje and Keyak

Keyak in a nutshell

0 SUV
1

T(0)

SUV = Secret and Unique Value

34 / 56



Ketje and Keyak

Keyak in a nutshell

0 SUV
1

T(0)

A(1)P(1)

C(1) T(1)

SUV = Secret and Unique Value

34 / 56



Ketje and Keyak

Keyak in a nutshell

0 SUV
1

T(0)

A(1)P(1)

C(1) T(1)

P(2)

C(2) T(2)

SUV = Secret and Unique Value

34 / 56



Ketje and Keyak

Keyak in a nutshell
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Ketje and Keyak

Leakage robustness

0 SUV
1

T(0)

A(1)P(1)

C(1) T(1)

P(2)

C(2) T(2)

A(3)

T(3)

SUV = Secret and Unique Value
Provided that uniqueness is enforced
then …

the secret state is a moving target [Taha, Schaumont, HOST 2014]

35 / 56



Kravatte and the Farfalle construction
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Kravatte and the Farfalle construction

The new Farfalle construction
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[IACR ePrint 2016/1188]
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Kravatte and the Farfalle construction

Kravatte for many purposes

Kravatte = Farfalle + Keccak-p[1600]

Kravatte-PRF Authentication
Kravatte-SAE Session authenticated encryption
Kravatte-SIV Synthetic-IV authenticated encryption
Kravatte-WBC Wide block cipher, authenticated en-

cryption with minimal expansion
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Conclusions

Conclusions

Permutations are well suited for IoT devices, especially for
code size
memory usage

Farfalle brings efficiency also on the high-end server
Bear in mind protections against side-channel attacks
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Conclusions

Thanks for your attention!

Any questions?

Q?
https://keccak.team/

@KeccakTeam
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Backup slides

A very classical example

RSA:
cd mod n = m

Implemented using the square & multiply algorithm:

http://www.embedded.com/print/4199399
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Backup slides

How to protect against side-channel attacks?

Electrical-level countermeasures
E.g., balacing the processing of 0 and 1

System-level countermeasures
E.g., limit the use of a key

Algorithmic countermeasures
Randomization
E.g., instead of processing x, process y and z s.t. x = y⊕ z
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Backup slides

What block cipher are used for?

Hashing: Davies-Meyer, …
Block encryption: ECB, CBC, …
Stream encryption:

synchronous: counter mode, OFB, …
self-synchronizing: CFB

MAC computation: CBC-MAC, C-MAC, …
Authenticated encryption: OCB, GCM, CCM …
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Backup slides

Block cipher operation
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Backup slides

Block cipher operation: the inverse
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Backup slides

When do you need the inverse?

Hashing and its modes HMAC, MGF1, …
Block encryption: ECB, CBC, …
Stream encryption:

synchronous: counter mode, OFB, …
self-synchronizing: CFB

MAC computation: CBC-MAC, C-MAC, …
Authenticated encryption: OCB, GCM, CCM …
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Backup slides

Block cipher internals
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Backup slides

Hashing using Davies-Meyer
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Backup slides

Removing diffusion restrictions
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Backup slides

Simplifying the view: iterated permutation
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Backup slides

Pseudo-random function (PRF)

input

…
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Backup slides

Message authentication code (MAC)

plaintext

plaintext
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Backup slides

Stream cipher

nonce

plaintext = ciphertext
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Backup slides

Authenticated encryption

nonce

plaintext = ciphertext

plaintext
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Backup slides

Incrementality

packet #1

packet #1
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Backup slides
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Backup slides

Incrementality

packet #1 packet #2 packet #3

packet #1 packet #2 packet #3
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Backup slides

In-place processing

Store A[x, y] at round i in (x′, y′) with(
x′
y′
)
=

(
1 0
1 2

)i (x
y

)
.

Interacts with π: the output of χ can overwrite its input
Matrix of order 4

⇒ no performance loss if 4 rounds unrolled

[Bertoni et al., Keccak implementation overview]
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