
Permutation-based cryptography
for the Internet of Things

Gilles Van Assche1

Joint work with Guido Bertoni, Joan Daemen1,2,
Seth Hoffert, Michaël Peeters1 and Ronny Van Keer1

1STMicroelectronics
2Radboud University

RIOT Summit 2017
Berlin, September 25-26, 2017

1 / 56

Outline

1 Parameters for the IoT

2 Permutations!

3 Keyed applications

4 Strobe

5 Ketje and Keyak

6 Kravatte and the Farfalle construction

2 / 56

Parameters for the IoT

Outline

1 Parameters for the IoT

2 Permutations!

3 Keyed applications

4 Strobe

5 Ketje and Keyak

6 Kravatte and the Farfalle construction

3 / 56

Parameters for the IoT

On the cost of cryptography for the IoT

code size
memory usage
execution time
efficiency on the high-end server?
protections against side-channel attacks?

4 / 56

Parameters for the IoT

On the cost of cryptography for the IoT

code size
memory usage
execution time
efficiency on the high-end server?
protections against side-channel attacks?

4 / 56

Parameters for the IoT

On the cost of cryptography for the IoT

code size
memory usage
execution time
efficiency on the high-end server?
protections against side-channel attacks?

4 / 56

Parameters for the IoT

What are side-channel attacks?

Leakage from the device
Time, electrical consumption, EM radiation
simple power analysis (SPA) vs differential power analysis (DPA)

Picture by oskay on Flickr

5 / 56

Parameters for the IoT

What are side-channel attacks?

Inducing faults in the device
Glitch, laser pulse

Picture by ViaMoi on Flickr

6 / 56

Parameters for the IoT

Usage and ownership

Actors:
Key owner
Device owner
Actual user

Usually, these are the same person, but…

7 / 56

Parameters for the IoT

Usage and ownership

When key owner ̸= device owner
Banking card
DRM

But hopefully the same person in open-source contexts!

8 / 56

Parameters for the IoT

Usage and ownership

When key/device owner ̸= actual user
Not always controlling the device

E.g., devices spread over a large area
E.g., on-site personnel
E.g., lost device

Distant eavesdropping

Protections against SCA can be needed.

9 / 56

Permutations!

Outline

1 Parameters for the IoT

2 Permutations!

3 Keyed applications

4 Strobe

5 Ketje and Keyak

6 Kravatte and the Farfalle construction

10 / 56

Permutations!

Symmetric crypto: what textbooks and intro’s say

Symmetric cryptographic primitives:
Block ciphers
Stream ciphers
Hash functions

And their modes-of-use

Picture by GlasgowAmateur

11 / 56

Permutations!

Examples of permutations

In Salsa, Chacha, Grindhal…
In SHA-3 candidates: CubeHash, Grøstl, JH, MD6, …
In CAESAR candidates: Ascon, Icepole, Norx, π-cipher, Primates,
Stribob, …

And of course in Keccak

12 / 56

Permutations!

The sponge construction

input output

outer
inner

0

0

r

c

f f f f f f

absorbing squeezing

Calls a permutation f
The capacity c determines the generic security:

Hashing: 2c/2
Authentication, encryption: 2c−ϵ

13 / 56

Permutations!

Keccak-f

The seven permutation army:
25, 50, 100, 200, 400, 800, 1600 bits
toy, lightweight, fastest
standardized in [FIPS 202]

Repetition of a simple round function
that operates on a 3D state
(5× 5) lanes
up to 64-bit each

14 / 56

Permutations!

Keccak-f in pseudo-code

KECCAK-F[b](A) {
 forall i in 0…nr-1
 A = Round[b](A, RC[i])
 return A
}

Round[b](A,RC) {
 θ step
 C[x] = A[x,0] xor A[x,1] xor A[x,2] xor A[x,3] xor A[x,4], forall x in 0…4
 D[x] = C[x-1] xor rot(C[x+1],1), forall x in 0…4
 A[x,y] = A[x,y] xor D[x], forall (x,y) in (0…4,0…4)

 ρ and π steps
 B[y,2*x+3*y] = rot(A[x,y], r[x,y]), forall (x,y) in (0…4,0…4)

 χ step
 A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y]), forall (x,y) in (0…4,0…4)

 ι step
 A[0,0] = A[0,0] xor RC

 return A
}

https://keccak.team/keccak_specs_summary.html

15 / 56

https://keccak.team/keccak_specs_summary.html

Permutations!

Bit interleaving

= +

ROT64 ↔ 2× ROT32

16 / 56

Permutations!

The unbearable lightness of permutations

Example: hashing with target security strength 2c/2
Davies-Meyer block cipher based hash

chaining value (block size): n ≥ c
input block size (“key” length): typically k ≥ n
feedforward (block size): n
⇒ total state ≥ 3c

Sponge
permutation width: c+ r
r can be made arbitrarily small, e.g., 1 byte
⇒ total state ≥ c+ 8

17 / 56

Permutations!

Cost of primitives and modes together

[Yalla, Homsirikamol, Kaps, DIAC 2014]
18 / 56

Permutations!

Symmetric crypto: a more correct picture

Symmetric cryptographic primitives:
Block ciphers
Key stream generators
Permutations

And their modes-of-use
Picture by Sébastien Wiertz

19 / 56

Keyed applications

Outline

1 Parameters for the IoT

2 Permutations!

3 Keyed applications

4 Strobe

5 Ketje and Keyak

6 Kravatte and the Farfalle construction

20 / 56

Keyed applications

Use Sponge for MACing

0 f f

Key

…

Padded message

f ff

MAC

21 / 56

Keyed applications

Use Sponge for (stream) encryption

0 f f

Key IV

f

Key stream

22 / 56

Keyed applications

Single pass authenticated encryption

0 f f

Key

…

Padded messageIV

f

Key stream

ff

MAC

But this is no longer the sponge …

23 / 56

Keyed applications

The duplex construction

Generic security provably equivalent to that of sponge
Applications: authenticated encryption, reseedable
pseudorandom generator …

24 / 56

Strobe

Outline

1 Parameters for the IoT

2 Permutations!

3 Keyed applications

4 Strobe

5 Ketje and Keyak

6 Kravatte and the Farfalle construction

25 / 56

Strobe

What is Strobe?

Layer above the duplex construction
Safe and easy syntax, to achieve, e.g.,

secure channels
signatures over a complete session

Very compact implementation
Mechanism to prevent side-channel attacks

[Mike Hamburg — https://strobe.sourceforge.io/]

26 / 56

https://strobe.sourceforge.io/

Strobe

Operations and data flow in Strobe

figure courtesy of Mike Hamburg

27 / 56

Strobe

Example: key derivation

KEY(master shared key K)
RATCHET
derived key 1← PRF(16 bytes)
RATCHET
derived key 2← PRF(16 bytes)

28 / 56

Strobe

Example: protocol

KEY(shared key K)
AD[nonce](sequence number i)
AD[auth-data](client IP address | server IP address)
send_ENC(“GET file”)
send_MAC(128 bits)
recv_ENC(buffer)
recv_MAC(128 bits)

29 / 56

Ketje and Keyak

Outline

1 Parameters for the IoT

2 Permutations!

3 Keyed applications

4 Strobe

5 Ketje and Keyak

6 Kravatte and the Farfalle construction

30 / 56

Ketje and Keyak

Ketje goals

Nonce-based AE function
96-bit or 128-bit security (incl. multi-target)
Sessions of header-body pairs

keeping the state during the session
Small footprint
Target niche: secure channel protocol on secure chips

banking card, ID, (U)SIM, secure element, FIDO, etc.
secure chip has strictly incrementing counter

Using reduced-round Keccak-f[400] or Keccak-f[200], to allow
implementation re-use
cryptanalysis re-use
reasonable side-channel protections

31 / 56

Ketje and Keyak

Ketje instances and lightweight features

feature Ketje Jr Ketje Sr
state size 25 bytes 50 bytes
block size 2 bytes 4 bytes

processing computational cost
initialization per session 12 rounds 12 rounds
wrapping per block 1 round 1 round
8-byte tag comp. per message 9 rounds 7 rounds

32 / 56

Ketje and Keyak

Keyak goals

Nonce-based AE function
128-bit security (incl. multi-target)
Session of header-body pairs

keeping the state during the session
Optionally parallelizable
Conservative safety margin
Using reduced-round Keccak-f[1600] or Keccak-f[800], to allow

implementation re-use
cryptanalysis re-use
reasonable side-channel protections

33 / 56

Ketje and Keyak

Keyak in a nutshell

0 SUV
1

T(0)

SUV = Secret and Unique Value

34 / 56

Ketje and Keyak

Keyak in a nutshell

0 SUV
1

T(0)

A(1)P(1)

C(1) T(1)

SUV = Secret and Unique Value

34 / 56

Ketje and Keyak

Keyak in a nutshell

0 SUV
1

T(0)

A(1)P(1)

C(1) T(1)

P(2)

C(2) T(2)

SUV = Secret and Unique Value

34 / 56

Ketje and Keyak

Keyak in a nutshell

0 SUV
1

T(0)

A(1)P(1)

C(1) T(1)

P(2)

C(2) T(2)

A(3)

T(3)

SUV = Secret and Unique Value

34 / 56

Ketje and Keyak

Leakage robustness

0 SUV
1

T(0)

A(1)P(1)

C(1) T(1)

P(2)

C(2) T(2)

A(3)

T(3)

SUV = Secret and Unique Value
Provided that uniqueness is enforced
then …

the secret state is a moving target [Taha, Schaumont, HOST 2014]

35 / 56

Kravatte and the Farfalle construction

Outline

1 Parameters for the IoT

2 Permutations!

3 Keyed applications

4 Strobe

5 Ketje and Keyak

6 Kravatte and the Farfalle construction

36 / 56

Kravatte and the Farfalle construction

The new Farfalle construction

pc

c

m0

k

pc

c

m1

k

…

pc

i c

mi

k

pe
e

f

z0

k′

pe
e

f

z1

k′

…

pej
e

j
f

zj

k′

K∥10∗ pb

i+2
c

pd

[IACR ePrint 2016/1188]

37 / 56

Kravatte and the Farfalle construction

Kravatte for many purposes

Kravatte = Farfalle + Keccak-p[1600]

Kravatte-PRF Authentication
Kravatte-SAE Session authenticated encryption
Kravatte-SIV Synthetic-IV authenticated encryption
Kravatte-WBC Wide block cipher, authenticated en-

cryption with minimal expansion

38 / 56

Conclusions

Conclusions

Permutations are well suited for IoT devices, especially for
code size
memory usage

Farfalle brings efficiency also on the high-end server
Bear in mind protections against side-channel attacks

39 / 56

Conclusions

Thanks for your attention!

Any questions?

Q?
https://keccak.team/

@KeccakTeam

40 / 56

https://keccak.team/
https://twitter.com/KeccakTeam

Backup slides

A very classical example

RSA:
cd mod n = m

Implemented using the square & multiply algorithm:

http://www.embedded.com/print/4199399

41 / 56

http://www.embedded.com/print/4199399

Backup slides

How to protect against side-channel attacks?

Electrical-level countermeasures
E.g., balacing the processing of 0 and 1

System-level countermeasures
E.g., limit the use of a key

Algorithmic countermeasures
Randomization
E.g., instead of processing x, process y and z s.t. x = y⊕ z

42 / 56

Backup slides

What block cipher are used for?

Hashing: Davies-Meyer, …
Block encryption: ECB, CBC, …
Stream encryption:

synchronous: counter mode, OFB, …
self-synchronizing: CFB

MAC computation: CBC-MAC, C-MAC, …
Authenticated encryption: OCB, GCM, CCM …

43 / 56

Backup slides

Block cipher operation

44 / 56

Backup slides

Block cipher operation: the inverse

45 / 56

Backup slides

When do you need the inverse?

Hashing and its modes HMAC, MGF1, …
Block encryption: ECB, CBC, …
Stream encryption:

synchronous: counter mode, OFB, …
self-synchronizing: CFB

MAC computation: CBC-MAC, C-MAC, …
Authenticated encryption: OCB, GCM, CCM …

46 / 56

Backup slides

Block cipher internals

47 / 56

Backup slides

Hashing using Davies-Meyer

48 / 56

Backup slides

Removing diffusion restrictions

49 / 56

Backup slides

Simplifying the view: iterated permutation

50 / 56

Backup slides

Pseudo-random function (PRF)

input

…

51 / 56

Backup slides

Message authentication code (MAC)

plaintext

plaintext

52 / 56

Backup slides

Stream cipher

nonce

plaintext = ciphertext

53 / 56

Backup slides

Authenticated encryption

nonce

plaintext = ciphertext

plaintext

54 / 56

Backup slides

Incrementality

packet #1

packet #1

55 / 56

Backup slides

Incrementality

packet #1 packet #2

packet #1 packet #2

55 / 56

Backup slides

Incrementality

packet #1 packet #2 packet #3

packet #1 packet #2 packet #3

55 / 56

Backup slides

In-place processing

Store A[x, y] at round i in (x′, y′) with(
x′
y′
)
=

(
1 0
1 2

)i (x
y

)
.

Interacts with π: the output of χ can overwrite its input
Matrix of order 4

⇒ no performance loss if 4 rounds unrolled

[Bertoni et al., Keccak implementation overview]

56 / 56

Backup slides

In-place processing

Store A[x, y] at round i in (x′, y′) with(
x′
y′
)
=

(
1 0
1 2

)i (x
y

)
.

Interacts with π: the output of χ can overwrite its input
Matrix of order 4

⇒ no performance loss if 4 rounds unrolled

[Bertoni et al., Keccak implementation overview]

56 / 56

Backup slides

In-place processing

Store A[x, y] at round i in (x′, y′) with(
x′
y′
)
=

(
1 0
1 2

)i (x
y

)
.

Interacts with π: the output of χ can overwrite its input
Matrix of order 4

⇒ no performance loss if 4 rounds unrolled

[Bertoni et al., Keccak implementation overview]

56 / 56

	Parameters for the IoT
	Permutations!
	Keyed applications
	Strobe
	Ketje and Keyak
	Kravatte and the Farfalle construction

