
Multiple Personalities
Thoughts on a Virtualized RIOT

Background

● Last year we told you why RIOT (sometimes) sucks
● This year we try to be a bit more productive (promise!)

● What do we mean by virtualisation?
○ Virtualization is an overloaded term nowadays

■ Storage, network, execution environments, virtual reality, …
■ We are talking about system virtualization
■ Container/partitions on top of a µKernel

● Alternative title: Why RIOT OS should become a real
µKernel OS?

Motivation

● How do we build a secure Internet-of-Things?
○ chinese manufacturers of IoT devices have an answer
○ notable exceptions (IKEA?)

● Billions of “smart” devices in the internet soon
○ unpatched, open, vulnerable, and easy to hack
○ a paradise for botnets, worms, and things we don’t even think about

● Is RIOT part of the problem or the solution?

● We need safe and secure systems!
● We need means to build these systems!
● We have to divide application concerns!
● How do we do it?

Pre-Requirements, or why is RIOT not a µKernel?

● Minimal basic OS-API ✓
● µKernel runs in kernel mode, everything else in user mode
● Memory-protection for "applications", drivers, stacks in

user mode
● Not a Software issue, hardware is needed: MMU or MPU

○ So far our targets have not supported either
○ This is changing! MPUs are coming!

What is a MPU?

● Memory Protection Unit (MPU), ARM feature
○ No memory translation, everything uses physical addresses
○ Protects up to 8 memory regions (windows) with n subregions
○ Overlapping protecting windows
○ Access permissions -> violation / mismatch calls MemManage fault

handler

● Memory access -> MPU checks if allowed
● MPU windows needed for

○ Kernel itself (static)
○ Partitions code and data (changes every partition switch)
○ Specific windows for tasks (usually stack, changes every task switch)

● Switch by config of MPU registers in kernel mode
○ Needs time
○ Should be static (as possible)

● Specify this config is the primary
nightmare...

How to slice the cake ˆmˆm RIOT OS?

● Assumptions:
○ MPU hardware support (MMU would be “degraded” to MPU functionality)
○ Relativ static system (kernel / app resources are known at build

time)

● Iterative approach / implementation should be possible
● Where to slice? (easy...)

○ Stacks (stack overflow protection, already started in RIOT OS)
○ Kernel and one application domain
○ Multiple application container / partitions
○ µKernel -> driver, stacks, modules in own partitions

● But how?

One possible approach (“borrowed”)

● Approach from AUTOBEST (r&d project by A. Züpke, R.
Kaiser et.al. with easycore GmbH, Erlangen)
○ Minimal configuration, use existing information in the code

■ RAM, partitions, stacks, IPC, threads, ...
○ Generate what is needed (MPU / system config, linker scripts)

● Open questions / possible problems:
○ How good is the separation of modules, functionality lived in RIOT?
○ Only upper OS API used, or are there cross reference calls in the

kernel itself?
○ How about the drivers? Or the stacks?

One possible approach (“borrowed”)

But why all the hassle?

● Helps the application / kernel development
○ Isolation of errors
○ More control of the resources

● Groundwork for more research
○ Resource optimization
○ (Partial) updates
○ Security (how about MILS?)

● Be able to call RIOT a µKernel on a conference without
blushing?

● Because RIOT should be part of the solution and not the
problem!

This is not the end

What does it mean for RIOT?

● Will there be a riot after this talk?
● It means changes and effort and tears

○ Like going from “Bolzplatz” to the amateur league
○ Code has to be refactored
○ Existing structure requisitioned
○ Probably there might be (even) more API-CHANGES!!!

● But is it doable? We think yes!
● But is it it worth? We say YES!!!!11!!

