~Multiple Persona

Thoughts on a VII"[U“IIZB RIOT _




Background

e Last year we told you why RIOT (sometimes) sucks
e This year we try to be a bit more productive (promise!)

e What do we mean by virtualisation?

o Virtualization is an overloaded term nowadays
m Storage, network, execution environments, virtual reality, ..
m We are talking about system virtualization
m Container/partitions on top of a pKernel

e Alternative title: Why RIOT OS should become a real
uKernel 0S?




Motivation

e How do we build a secure Internet-of-Things?
o chinese manufacturers of IoT devices have an answer
o notable exceptions (IKEA?)

e Billions of “smart” devices in the internet soon

o unpatched, open, vulnerable, and easy to hack
o a paradise for botnets, worms, and things we don’t even think about

e Is RIOT part of the problem or the solution?

We need safe and secure systems!

We need means to build these systems!
We have to divide application concerns!
How do we do it?




Pre-Requirements, or why is RIOT not a pKernel?

« Minimal basic 0S-API Vv

« MKernel runs in kernel mode, everything else in user mode
« Memory-protection for "applications", drivers, stacks 1in
user mode

« Not a Software 1issue, hardware 1is needed: MMU or MPU

o So far our targets have not supported either
o This is changing! MPUs are coming!




What is a MPU?

e Memory Protection Unit (MPU), ARM feature
o No memory translation, everything uses physical addresses
o Protects up to 8 memory regions (windows) with n subregions
o Overlapping protecting windows
o Access permissions -> violation / mismatch calls MemManage fault

handler
e Memory access —-> MPU checks if allowed

e MPU windows needed for
o Kernel itself (static)
o Partitions code and data (changes every partition switch)
o Specific windows for tasks (usually stack, changes every task switch)
e Switch by config of MPU registers in kernel mode
o Needs time
o Should be static (as possible)
e Specify this config is the primary
nightmare...




How to slice the cake "m™m RIOT 0S?

e Assumptions:
o MPU hardware support (MMU would be “degraded” to MPU functionality)
o Relativ static system (kernel / app resources are known at build
time)

e Iterative approach / implementation should be possible

e Where to slice? (easy...)

Stacks (stack overflow protection, already started in RIOT O0S)
o Kernel and one application domain

o Multiple application container / partitions

o pKernel -> driver, stacks, modules in own partitions

e But how?

(@)



One possible approach (“borrowed”)

e Approach from AUTOBEST (r&d project by A. Zipke, R.

Kaiser et.al. with easycore GmbH, Erlangen)
o Minimal configuration, use existing information in the code
m RAM, partitions, stacks, IPC, threads,
o Generate what is needed (MPU / system config, linker scripts)

e Open questions / possible problems:

o How good is the separation of modules, functionality lived in RIOT?

o Only upper 0S API used, or are there cross reference calls in the
kernel itself?

o How about the drivers? Or the stacks?



One possible approach (“borrowed”)

—_— (Dummy)
@ objects
C{)fn . P Ne
Pifes (la W
Application \ i ¢ /

+ Kernel e
_ Extract ROM image

memory sizes

HW
description o ‘tmore?
D System config
+ RAM
+ Partitions
» Stacks
« IPC

Threads
e & Generate :\'
\ o linker scripts . g

&
/'Memory map /Q%

T { converter &

mnwpy _-"" g Kernel + config

Memory mappin
MPU layout




But why all the hassle?

e Helps the application / kernel development
o Isolation of errors
o More control of the resources

e Groundwork for more research
o Resource optimization
o (Partial) updates
o Security (how about MILS?)

e Be able to call RIOT a pKernel on a conference without
blushing?

e Because RIOT should be part of the solution and not the
problem!




This is not the end



What does it mean for RIOT?

e Will there be a riot after this talk?

e It means changes and effort and tears

o Like going from “Bolzplatz” to the amateur league
o Code has to be refactored

o Existing structure requisitioned

o Probably there might be (even) more API-CHANGES!!!

e But is it doable? We think yes!
e But 1s it it worth? We say YES!!!!11!!



